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Abstract 
This paper develops a particle …ltering algorithm to estimate dynamic equilibrium models with stochastic 

volatility using a likelihood-based approach. The algorithm, which exploits the structure and profusion of 

shocks in stochastic volatility models, is versatile and computationally tractable even in large-scale models. 

As an application, we use our algorithm and Bayesian methods to estimate a business cycle model of the 

U.S. economy with both stochastic volatility and parameter drifting in monetary policy. Our application shows 

the importance of stochastic volatility in accounting for the dynamics of the data. 
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1. Introduction

This paper develops a particle filtering algorithm to estimate dynamic equilibrium models with

stochastic volatility using a likelihood-based approach. The novelty of our algorithm is that it

does not require the presence of linear measurement errors to evaluate the likelihood function of

the model. In order to do that, we characterize the properties of the solution of these models when

approximated with the second-order expansion. As an application of our procedure, we estimate

a medium-size business cycle economy.

Our results are useful because, motivated by the findings of Stock and Watson (2002) and Sims

and Zha (2006), many recent papers have built dynamic equilibrium models with volatility shocks

(also known as uncertainty shocks). Among them, we can highlight Fernández-Villaverde and

Rubio-Ramírez (2007), Justiniano and Primiceri (2008), Bloom (2009), and Fernández-Villaverde

et al. (2010c). In these models, and in the tradition of stochastic volatility (Shephard, 2008),

there are two types of shocks: structural shocks (shock to productivity, to preferences, etc.) and

volatility shocks (shocks to the standard deviation of the innovations to the structural shocks).

To fulfill the promise in this literature, we need tools to estimate this class of models. However,

the task is complicated by the inherent non-linearity that stochastic volatility generates. Lineariza-

tion is ill-equipped to handle time-varying volatility because it yields certainty-equivalent policy

functions. That is, volatility influences neither the agents’decision rules nor the laws of motion

of the aggregate variables. Hence, to consider how stochastic volatility affects those factors, it is

imperative to employ at least the second-order approximation to the equilibrium dynamics of the

economy and to use simulation-based estimators of the likelihood.

To accomplish that last task, one could, in principle, rely on the baseline particle filter pre-

sented in Fernández-Villaverde and Rubio-Ramírez (2007). Unfortunately, that version of the
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particle filter requires, when estimating models with stochastic volatility, the presence of linear

measurement errors in observables. Otherwise, we would be forced to solve a large quadratic sys-

tem of equations with multiple solutions, an endeavor for which there are no suitable algorithms.

Although measurement errors are plausible, they complicate identification in small samples and

entangle the interpretation of the results.

To get around this problem, we show how to write an alternative particle filter that exploits

the structure of the second-order approximation to the equilibrium dynamics of an economy with

stochastic volatility without the need of linear measurement errors. Second-order approximations

accurately capture important implications of stochastic volatility and are convenient because they

are not computationally expensive.

We proceed in two steps. First, we characterize the second-order approximation to the decision

rules of a dynamic equilibrium model with stochastic volatility. Second, we demonstrate how to

use this characterization to write the alternative particle filter. The key is to show how the

quadratic problem associated with the evaluation of the approximated measurement density is

reduced to a much simpler linear problem that only involves a matrix inversion. After we have

evaluated the likelihood, we can combine it with a prior and a Markov chain Monte Carlo (McMc)

algorithm to draw from the posterior distribution.

Our characterization of the second-order approximation to the decision rules is also of interest

in itself. Among other things, it is useful to analyze the equilibrium of the model, to explore the

shape of its impulse response functions, or to calibrate it. More concretely, we prove that:

1. The first-order approximation to the decision rules of the agents (or any other equilibrium

object of interest) does not depend on volatility shocks and they are certainty equivalent.

2. The second-order approximation to the decision rules of the agents only depends on volatility
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shocks on terms where volatility is multiplied by the innovation to its own structural shock.

For instance, if we have a productivity shock and a volatility shock to it, the only non-zero

term where the volatility shock to productivity appears is the one where the volatility shock

multiplies the innovation to the productivity shock. Thus, only a few of the terms in the

second-order approximation are non-zero.

3. The perturbation parameter will only appear in a non-zero term where it is raised to a

square. This term is a constant that corrects for precautionary behavior induced by risk.

As an application, we estimate a business cycle model of the U.S. economy. The model

incorporates stochastic volatility in the shocks that drive its dynamics and parameter drifting in

the parameters that control monetary policy. In that way, we include two of the main mechanisms

that researchers have highlighted to account for the time-varying volatility of U.S. time series -

heteroscedastic shocks and parameter drifting- and let the likelihood decide which of them better

accounts for the data. Last, we have a model that is as rich as many of the models employed

in modern quantitative macroeconomics. While estimating such a large model is a computational

challenge, we wanted to demonstrate that our procedure is of practical use and to make our

application a blueprint for the estimation of other dynamic equilibrium models.

Our main empirical findings are as follows. First, the posterior distribution of the parameters

puts most of its mass in areas that denote a fair amount of stochastic volatility. Second, a model

comparison exercise indicates that, even after controlling for stochastic volatility, the data prefer

a specification where monetary policy changes over time. This finding should not be interpreted,

though, as implying that volatility shocks did not play a role. It means, instead, that a successful

model of the U.S. economy requires the presence of both stochastic volatility and parameter

drifting, a result that challenges the results of Sims and Zha (2006). Finally, we document the
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evolution of the structural shocks, of stochastic volatility, and the parameters of monetary policy.

We emphasize the confluence, during the 1970s, of times of high volatility and weak responses to

inflation, and, during the 1990s, of positive structural shocks and low volatility even if monetary

policy was weaker than often argued. In the appendix, we construct counterfactual histories of

the U.S. data by varying some aspect of the model such as shutting down time-varying volatility

or imposing alternative monetary policies.

An alternative to our stochastic volatility framework would be to work with Markov regime-

switching models such as those of Bianchi (2009) or Farmer et al. (2009). These models provide

a promising extra degree of flexibility in modelling aggregate dynamics. In fact, some of the fast

changes in policy parameters that we document in our empirical section suggest that discrete

jumps could be a good representation of the data. We hope to undertake in the future a more

careful assessment of the advantages and disadvantages of stochastic volatility versus Markov

regime-switching models.

Finally, even if the motivation for our approach and the application belong to macroeconomics,

the tools we present are not specific to that field. One can think about the importance of estimating

dynamic equilibrium models with stochastic volatility in many other fields such as finance (Bansal

and Yaron, 2004) or international economics (Fernández-Villaverde et al., 2010c).

The rest of the paper is organized as follows. Section 2 introduces a generic dynamic equi-

librium model with stochastic volatility to fix notation and discuss how to solve it. Section 3

explains the evaluation of the likelihood of the model. Section 4 compares our approach with

continuous-time methods. Section 5 presents our application. Section 6 concludes. An extensive

technical appendix includes additional material.
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2. Dynamic Equilibrium Models with Stochastic Volatility

2.1. The Model

The set of equilibrium conditions of a wide class of dynamic equilibrium models can be written as

Etf (Yt+1,Yt,St+1,St,Zt+1,Zt; γ) = 0, (1)

where Et is the conditional expectation operator at time t, Yt = (Y1t,Y2t, . . . ,Ykt)′ is the k × 1

vector of observables at time t, St = (S1t,S2t, . . . ,Snt)′ is the n × 1 vector of endogenous states

at time t, Zt = (Z1t,Z2t, . . . ,Zmt)′ is the m × 1 vector of structural shocks at time t, f maps

R2(k+n+m) into Rk+n+m, and γ is the nγ × 1 vector of parameters that describe preferences and

technology. In this paper, γ is also the vector of parameters to be estimated.

We will consider models where Zit+1 follow a stochastic volatility process of the form

Zit+1 = ρiZit + Λσiσit+1εit+1 (2)

for all i ∈ {1, . . . ,m}, where Λ is a perturbation parameter, σi is the mean volatility, and log σit+1,

the percentage deviation of the standard deviation of the innovations to the structural shocks with

respect to its mean, evolves as

log σit+1 = ϑi log σit + Λ
(
1− ϑ2

i

) 1
2 ηiuit+1 (3)

for all i ∈ {1, . . . ,m}. The combination of levels in (2) and logs in (3) ensures a positive σit+1.

We multiply the innovation in (3) by
(
1− ϑ2

i

) 1
2 to normalize its size by the persistence of σit. It

will be clear momentarily why we specify (2) and (3) in terms of the perturbation parameter Λ.
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It is also convenient to write, for all i ∈ {1, . . . ,m}, the laws of motions for Zit and log σit

Zit = ρiZit−1 + σiσitεit (4)

and

log σit = ϑi log σit−1 +
(
1− ϑ2

i

) 1
2 ηiuit (5)

Note that Λ appears only in equations (2) and (3) but not in equations (4) and (5). This

is because this parameter is used to eliminate, when we later determine the point around which

we approximate the equilibrium dynamics of the model, uncertainty about the future. Given

the information set in equation (1), there is uncertainty about both Zit+1 and log σit+1 for all

i ∈ {1, . . . ,m}, but there is no uncertainty about either Zit or log σit for any i ∈ {1, . . . ,m}.

Let Σt = (log σ1t, . . . , log σmt)
′ be the m× 1 vector of volatility shocks, Et = (ε1t, . . . , εmt)

′ the

m × 1 vector of innovations to the structural shocks, and Ut = (u1t, . . . , umt)
′ the m × 1 vector

of innovations to the volatility shocks. We assume that Et ∼ N (0, I) and Ut ∼ N (0, I), where

0 is an m × 1 vector of zeros and I is an m ×m identity matrix. To ease notation, we assume

that all structural shocks face volatility shocks, that the volatility shocks are uncorrelated, and

that Et and Ut are normally distributed. It is straightforward, yet cumbersome, to generalize the

notation to other cases. In particular, as we will see below, to implement our particle filter, we

only need to be able to simulate Et and evaluate the density of Ut.

2.2. The Solution

Given equations (1)-(5), the solution to the model -if one exists- that embodies equilibrium dy-

namics (that is, agents’optimization and market clearing conditions) is characterized by a policy
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function describing the evolution of the endogenous state variables

St+1 = h (St,Zt−1,Σt−1, Et,Ut,Λ; γ) , (6)

and two policy functions describing the law of motion of the observables

Yt = g (St,Zt−1,Σt−1, Et,Ut,Λ; γ) (7)

and

Yt+1 = g (St+1,Zt,Σt,ΛEt+1,ΛUt+1,Λ; γ) , (8)

together with equations (4) and (5) describing the laws of motion of the structural and volatility

shocks. The policy functions h and g map Rn+4m+1 into Rn and Rk, respectively, and are indexed

by γ.

For our purposes, it is important to define the steady state of the model. Our assumptions

about the stochastic processes imply that, in the steady state, Z = 0 and Σ = 0. Given γ and

equations (1)-(8), the steady state of the model is a k×1 vector of observables Y = (Y1,Y2, . . . ,Yk)′

and an n× 1 vector of endogenous states S = (S1,S2, . . . ,Sn)′ such that

f (g (h (S,0,0,0,0, 0; γ) ,0,0,0,0, 0; γ) , g (S,0,0,0,0, 0; γ) , h (S,0,0,0,0, 0; γ) ,S,0,0; γ) = 0.

(9)

In addition, in the steady state, the following two relationships hold

S = h (S,0,0,0,0, 0; γ) , (10)
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and

Y = g (S,0,0,0,0, 0; γ) . (11)

Note that, if Λ = 0, the model is in the steady state, since we eliminate any uncertainty about

the future. If Λ 6= 0, the model is not in the steady state and conditions (9)-(11) do not hold. For

instance, in general S 6= h (S,0,0,0,0,Λ; γ) because of the precautionary behavior of agents.

2.3. The State-Space Representation

Given the solution to the model -the policy functions (6)-(8) together with equations (4) and

(5)- we can characterize the equilibrium dynamics of the model by its state-space representation

written in terms of the transition and the observation equations.

We stack equations (4) to (6) in a transition equation

St+1 = h̃ (St,Λ; γ) + ΞWt+1 (12)

that describe the evolution of the states (endogenous states, structural shocks, volatility shocks,

and their innovations) as a function of lag states, the perturbation parameter, and the vector

of parameters, where St =
(
S ′t,Z ′t−1,Σ

′
t−1, E ′t,U ′t

)′
is the (n+ 4m) × 1 vector of the states and h̃

maps Rn+4m+1 into Rn+4m. Also, Wt+1 =
(
W ′1t+1,W ′2t+1

)′
is a 2m× 1 vector of random variables,

W1t+1 and W2t+1 are m × 1 vectors with distributions W1t+1 ∼ N (0, I) and W2t+1 ∼ N (0, I),

and Ξ is a (n+ 4m) × 2m matrix with the the top n + 2m rows equal to zero and the bottom

2m× 2m matrix equal to the identity matrix. W1t+1 andW2t+1 share distributions with Et+1 and

Ut+1 respectively. If we were to change distributions for either Et+1 or Ut+1 we would need to do

the same with W1t+1 and W2t+1. Let us define ns = n + 4m. The linearity of the second term

of the right-hand side is a consequence of the autoregressive specification of the structural shocks
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and the evolution of their volatilities. However, through the function h̃, those shocks and their

volatilities can affect St+1 non-linearly.

The measurement equation uses the policy function (7) to describe the relationship of the

observables with the states, the perturbation parameter, and the vector of parameters

Yt = g (St,Λ; γ) . (13)

2.4. Approximating the State-Space Representation

In general, when we deal with the class of dynamic equilibrium models with stochastic volatility,

the policy functions h and g cannot be found explicitly. Thus, we cannot build the state-space

representation described by (12) and (13). Instead, we will approximate numerically the solution

of the model and use the result to generate an approximated state-space representation.

There are many different solution algorithms for dynamic equilibrium models. Among them,

the perturbation method has emerged as a popular way (see Judd and Guu, 1997 and Aruoba

et al., 2006) to obtain higher-order Taylor series approximations to the policy functions (6)-(7)

together with equations (4) and (5) around the steady state. We also get the Taylor expansion

of (4) because it is a non-linear function. Beyond being extremely fast for systems with a large

number of state variables, perturbations are highly accurate even far away from the perturbation

point (Aruoba, et al., 2006, and, for cases with stochastic volatility, Caldara et al., 2012).

The perturbation method allows the researcher to approximate the solution to the model up to

any order. Since we want to analyze models with volatility shocks, we must go beyond a first-order

approximation. First-order approximations are certainty equivalent, and hence, they are silent

about stochastic volatility. As we will see in section 3.1, volatility shocks only appear starting in

the second-order approximation. But since we want to evaluate the likelihood function, we stop
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at a second-order approximation. Because of dimensionality issues, a higher-order approximation

would make the evaluation of the likelihood function exceedingly challenging for current computers

for models with a reasonable number of state variables.

Given a second-order approximation to the policy functions (6)-(7) together with equations (4)

and (5) around the steady state, the approximated state-space representation can be written in

terms of two equations: the approximated transition equation and the approximated measurement

equation. The approximated transition equation is

Ŝt+1 =


Ψ1
s,1Ŝt
...

Ψ1
s,nsŜt

+
1

2


Ŝ′tΨ2

s,1Ŝt
...

Ŝ′tΨ2
s,nsŜt

+
1

2


ΨΛ
s,1

...

ΨΛ
s,ns

+ ΞWt+1 (14)

where Ŝt = St−S is the ns× 1 vector of deviations of the states from their steady-state value and

S = (S ′,0′,0′,0′,0′)′. The approximated measurement equation is

Yt − Y =


Ψ1
y,1Ŝt
...

Ψ1
y,kŜt

+
1

2


Ŝ′tΨ2

y,1Ŝt
...

Ŝ′tΨ2
y,kŜt

+
1

2


ΨΛ
y,1

...

ΨΛ
y,k

 . (15)

where Y is the steady-state value of Yt.

In these equations, Ψ1
s,i is a 1× ns vector and Ψ2

s,i is an ns × ns matrix for i = 1, . . . , ns. The

first term is the linear approximation to the transition equation for the states, while the second

term is the quadratic component of the second-order approximation. Similarly, Ψ1
y,i is a 1 × ns

vector and Ψ2
y,i an ns × ns matrix for i = 1, . . . , k. The interpretation of each term is the same

as before, but for the measurement equations. The term ΨΛ
s,i is the constant that appears in the
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second-order perturbation that corrects for risk in the evolution of state i = 1, . . . , ns. Similarly,

the term ΨΛ
y,i is the constant correction for risk of observable i = 1, . . . , k. All these vectors and

matrices are non-linear functions of γ. It is important to emphasize that we are not assuming the

presence of any measurement error. We will return to this point in a few paragraphs.

3. Stochastic Volatility and Evaluation of the Likelihood

In this section, we explain how to evaluate the likelihood function of our class of dynamic equi-

librium models with volatility shocks in equation (1) using the approximated transition and the

measurement equations (14) and (15). If we allow Yt to be the data counterpart of our observables

Yt, and Yt = (Y1, . . . ,Yt) (with Y0 = {∅}) to be their history up to time t, given γ, we can write

the likelihood of YT as
T∏
t=1

p
(
Yt = Yt|Yt−1; γ

)
,

where

p
(
Yt = Yt|Yt−1; γ

)
=∫ ∫ ∫ ∫

p (Yt = Yt|St,Zt−1,Σt−1, Et; γ) p
(
St,Zt−1,Σt−1, Et|Yt−1; γ

)
dStdZt−1dΣt−1dEt (16)

for all t ∈ {2, . . . , T} and

p (Y1 = Y1; γ)

=

∫ ∫ ∫ ∫
p (Y1 = Y1|S1,Z0,Σ0, E1; γ) p (S1,Z0,Σ0, E1; γ) dS1dZ0dΣ0dE1. (17)
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Note that the Ut’s do not show up in these two expressions. It will be momentarily clear why this

comes directly from our procedure below to evaluate the likelihood.

Computing this likelihood is diffi cult. Since we do not have analytic forms for the terms inside

the integral, it cannot be evaluated exactly and deterministic numerical integration algorithms are

too slow for practical use (we have four integrals per period over large dimensions). As a feasible

alternative, we will show how to use a simple particle filter to obtain a simulation-based estimate

of (16). Künsch (2005) proves, under weak conditions, that the particle filter delivers a consistent

estimator of the likelihood function and that a central limit theorem applies. A particle filter is

a sequential simulation device for filtering of non-linear and/or non-Gaussian space models (Pitt

and Shephard, 1999, and Doucet et al., 2001). In economics the particle filter was introduced by

Fernández-Villaverde and Rubio-Ramírez (2007).

As mentioned before, the particle filter has minimal requirements: the ability to evaluate the

approximated measurement density associated with the approximated measurement equation, to

simulate from the approximated dynamics of the state using the approximated transition equation,

and to draw from the unconditional density of the states implied by the approximated transition

equation. Usually, the first requirement is the hardest. These three requirements are formally

described in the following assumption.

Assumption 1. To implement the particle filter, we assume that:

1. We can evaluate the approximated measurement density

p (Yt = Yt|St,Zt−1,Σt−1, Et; γ) .
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2. We can simulate from the approximated transition equation

(
S ′t+1,Z ′t,Σ′t, E ′t+1

)′ | (S ′t,Z ′t−1,Σ
′
t−1, E ′t

)′
,F
(
Yt
)

; γ

for all t ∈ {1, . . . , T}, where F (Yt) is the filtration of Yt.

3. We can draw from the unconditional distribution implied by the approximated transition

equation

p (St,Zt−1,Σt−1, Et; γ) .

The second requirement asks for the filtration of Yt, F (Yt), because we will need to evaluate

the volatility shocks. The last requirement can be easily implemented using the results in Santos

and Peralta-Alva (2005). Given our assumption about Et+1 and the quadratic form of the approx-

imated transition equation (14), the second requirement easily holds. A key novelty of this paper

is that we show how the class of dynamic equilibrium models with volatility shocks considered

here also satisfies the first requirement.

For our class of models, conditional on havingN draws of
{
sit, z

i
t−1, σ

i
t−1, ε

i
t

}N
i=1
from the density

p (St,Zt−1,Σt−1, Et|Yt−1; γ), each integral (16) can be consistently approximated by

p
(
Yt = Yt|Yt−1; γ

)
' 1

N

N∑
i=1

p
(
Yt = Yt|sit, zit−1, σ

i
t−1, ε

i
t; γ
)

(18)

for all t ∈ {2, . . . , T}. For t = 1, we need N draws from the density p (St,Zt−1,Σt−1, Et; γ), so

that the integral (17) can be consistently approximated by

p (Y1 = Y1; γ) ' 1

N

N∑
i=1

p
(
Y1 = Y1|si1, zi0, σi0, εi1; γ

)
. (19)
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We know that we can make the draws because requirement 3 in assumption 1 holds.

In our framework, checking whether requirement 1 in assumption 1 holds means checking

whether we can evaluate, for each draw in
{
sit, z

i
t−1, σ

i
t−1, ε

i
t

}N
i=1
, the approximated measurement

density

p
(
Yt = Yt|sit, zit−1, σ

i
t−1, ε

i
t; γ
)

(20)

for all t ∈ {1, . . . , T}. This evaluation step is crucial, not only because it is required to compute

(18) and (19) but also because, as we will explain momentarily, our particle filter needs to evaluate

(20) to resample from p (St,Zt−1,Σt−1, Et|Yt−1; γ) and get draws from p (St+1,Zt,Σt, Et+1|Yt; γ)

to obtain
{
sit, z

i
t−1, σ

i
t−1, ε

i
t

}N
i=1

for all t ∈ {2, . . . , T} recursively.

To check how we can evaluate the approximated measurement density (20), we rewrite (15)

in terms of draws
(
si′t , z

i′
t−1, σ

i′
t−1, ε

i′
t

)′
and Yt, instead of

(
S ′t,Z ′t−1,Σ

′
t−1, E ′t

)′
and Yt. Thus, the

approximated measurement equation (15) becomes

Yt − Y =


Ψ1
y,1Ŝit
...

Ψ1
y,kŜit

+
1

2


Ŝi′t Ψ2

y,1Ŝit
...

Ŝi′t Ψ2
y,kŜit

+
1

2


ΨΛ
y,1

...

ΨΛ
y,k

 (21)

where Ŝit = Sit−S and Sit =
(
si′t , z

i′
t−1, σ

i′
t−1, ε

i′
t ,U ′t

)′
. The new approximated measurement equation

(21) implies that evaluating the approximated measurement density (20) involves solving the

system of quadratic equations

Yt − Y −


Ψ1
y,1Ŝit
...

Ψ1
y,kŜit

−
1

2


Ŝi′t Ψ2

y,1Ŝit
...

Ŝi′t Ψ2
y,kŜit

−
1

2


ΨΛ
y,1

...

ΨΛ
y,k

 = 0 (22)
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for Ut given Yt, sit, zit−1, σ
i
t−1, and ε

i
t.

Solving this system is non-trivial. Since the system is quadratic, we may have either no solution

or several different ones. In fact, it is even hard to know how many solutions there are. But even

if we knew the number of solutions, we are not aware of any accurate and effi cient method to

solve quadratic problems that finds all the solutions. This diffi culty seemingly prevents us from

achieving our goal of evaluating the likelihood function.

A solution would be to introduce, as Fernández-Villaverde and Rubio-Ramírez (2007) did, a

k×1 vector of linear measurement errors and solve for those instead of Ut. In this case the system

would have a unique, easy-to-find solution. However, there are three reasons, in increasing order

of importance, why this solution is not satisfactory:

1. Although measurement errors are plausible, their presence complicates the interpretation

of any empirical results. In particular, we are interested in measuring how heteroscedastic

structural shocks help in accounting for the data and measurement errors can confound us.

2. The absence of measurement errors will help us to illustrate below how dynamic equilibrium

models with volatility shocks have a profusion of shocks that we can exploit in our estimation.

3. As we will also show below, volatility shocks would enter linearly (conditional on the draw)

in the system equations. Since, by definition, linear measurement errors would also enter in

the same fashion, it would be hard to identify one apart from the others.

Our alternative in this paper is to realize that considering stochastic volatility converts the

above-described quadratic system into a linear one. Hence, if a rank condition is satisfied, the

system (22) has only one solution and the solution can be found by inverting a matrix. Thus,

requirement 1 in assumption 1 holds and we can use the particle filter. The core of the argument
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is to note that, when volatility shocks are considered, the policy functions share a peculiar pattern

that we can exploit.

3.1. Structure of the Solution

Our first step will characterize the first- and second-order derivatives of the policy functions

h and g evaluated at the steady state. Then, we will describe an interesting pattern in these

derivatives. The second step will take advantage of the pattern to show that, when the number

of volatility shocks equals the number of observables, our quadratic system becomes a linear one.

This characterization is important both for estimation and, more generally, for the analysis of

perturbation solutions to dynamic equilibrium models with stochastic volatility.

3.1.1. First- and Second-order Derivatives of the Policy Functions

Let us begin with the characterization of the first- and second-order derivatives of the policy

functions. The following theorem shows that the first-order derivatives of h and g with respect to

any component of Ut and Σt−1 evaluated at the steady state are zero; that is, volatility shocks and

their innovations do not affect the linear component of the optimal decision rule of the agents.

The same occurs with the perturbation parameter Λ. A similar result has been established by

Schmitt-Grohé and Uribe (2004) for the homoscedastic shocks case.

Theorem 2. Let us denote [Υω]ij as the derivative of the i − th element of generic function Υ

with respect to the j − th element of generic variable ω evaluated at the non-stochastic steady

state (where we drop this index if ω is unidimensional). Then, for the dynamic equilibrium model

specified in equation (1), we have that
[
hΣt−1

]i1
j

=
[
gΣt−1

]i2
j

= [hUt ]
i1
j = [gUt ]

i2
j = [hΛ]i1 = [gΛ]i2 = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.
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Proof. See appendix 2.1.

The second theorem shows, among other things, that the second partial derivatives of h and

g with respect to either log σit−1 or ui,t and any other variable but εi,t are also zero for any

i ∈ {1, . . . ,m}.

Theorem 3. Furthermore, if we denote [Υωξ]
i
j1,j2

as the derivative of the i− th element of generic

function Υ with respect to the j1 − th element of generic variable ω and the j2 − th element of

generic variable ξ evaluated at the non-stochastic steady state (where again we drop the index for

unidimensional variables), we have that [hΛ,St ]
i1
j = [gΛ,St ]

i2
j = 0 for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k},

and j ∈ {1, . . . , n} ,

[
hΛ,Zt−1

]i1
j

=
[
gΛ,Zt−1

]i2
j

=
[
hΛ,Σt−1

]i1
j

=
[
gΛ,Σt−1

]i2
j

= [hΛ,Et ]
i1
j = [gΛ,Et ]

i2
j = [hΛ,Ut ]

i1
j = [gΛ,Ut ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m},

[
hSt,Σt−1

]i1
j1,j2

=
[
gSt,Σt−1

]i2
j1,j2

= [hSt,Ut ]
i1
j1,j2

= [gSt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m} ,

[
hZt−1,Σt−1

]i1
j1,j2

=
[
gZt−1,Σt−1

]i2
j1,j2

=
[
hΣt−1,Σt−1

]i1
j1,j2

=
[
gΣt−1,Σt−1

]i2
j1,j2

= 0

and

[
hZt−1,Ut

]i1
j1,j2

=
[
gZt−1,Ut

]i2
j1,j2

=
[
hΣt−1,Ut

]i1
j1,j2

=
[
gΣt−1,Ut

]i2
j1,j2

= [hUt,Ut ]
i1
j1,j2

= [gUt,Ut ]
i2
j1,j2

= 0
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for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}, and

[
hEt,Σt−1

]i1
j1,j2

=
[
gEt,Σt−1

]i2
j1,j2

= [hEt,Ut ]
i1
j1,j2

= [gEt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if j1 6= j2.

Proof. See appendix 2.2.

We clarify the statement of theorem 3 with table 3.1, in which we characterize the second

derivatives of the functions h and g with respect to the different variables (St,Zt−1,Σt−1, Et,Ut,Λ).1

This pattern is both interesting and useful. The way to read table 3.1 is as follows. Take an

arbitrary entry, for instance, entry (1,2), StZt−1 6= 0. In this entry, we state that the cross-

derivatives of h and g with respect to St and Zt−1 are different from zero (the table is upper

triangular because, given the symmetry of second derivatives, we do not need to report those

entries). Similarly, entry (3,5), Σt−1Ut = 0 tells us that the cross-derivatives of h and g with

respect to Σt−1 and Ut are all zero. Entries (3,4) and (4,5) have a “*” to denote that the only

cross-derivatives of those entries that are different from zero are those that correspond to the same

index j (that is, the cross-derivatives of each innovation to the structural shocks with respect to

its own volatility shock and the cross-derivatives of the innovation to the structural shocks to the

innovation to its own volatility shock). The lower triangular part of the table is empty because

of the symmetry of second derivatives.

Table 3.1 tells us that, of the 21 possible sets of second derivatives, 12 are zero and 9 are not.

The implications for the decision rules of agents and for the equilibrium function are striking.

The perturbation parameter, Λ, will only have a coeffi cient different from zero in the term where

1For ease of exposition, in table 3.1 we are not being explicit about the dimensions of the matrices: it is a
qualitative description of the relevant derivatives.
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it appears in a square by itself. This term is a constant that corrects for precautionary behavior

induced by risk. Volatility shocks, Σt−1 , appear with coeffi cients different from zero only in the

term Σt−1Et where they are multiplied by the innovation to its own structural shock Et. Finally,

innovations to the volatility shocks, Ut, also appear with coeffi cients different from zero when they

show up with the innovation to their own structural shock Et. Hence, of the terms that complicate

the evaluation of the approximated measurement density, only the ones associated with [hEt,Ut ]
i1
j1,j1

and [gEt,Ut ]
i2
j1,j1

are non-zero.

3.1.2. Evaluating the Likelihood Using the Particle Filter

The second step is to use theorems 2 and 3 to show that the system (22) is linear and has only one

solution. Corollary 4 shows that the pattern described in table 3.1. has an important implication

for the structure of the approximated measurement equation (21).

Corollary 4. The approximated measurement equation (21) can be written as

Yt − Y =


Ψ̃1
y,1
˜̂Sit
...

Ψ̃1
y,k
˜̂Sit

+
1

2


˜̂Si′t Ψ̃2,1

y,1
˜̂Sit

...

˜̂Si′t Ψ̃2,1
y,k
˜̂Sit

+
1

2


ΨΛ
y,1

...

ΨΛ
y,k

+


εi′t Ψ̃2,2

y,1

...

εi′t Ψ̃2,2
y,k

σit−1 +


εi′t Ψ̃2,3

y,1

...

εi′t Ψ̃2,3
y,k

Ut

where S̃it =
(
si′t , z

i′
t−1, ε

i′
t

)′
is the (n+ 2m)× 1 vector of the simulated states without the stochastic

volatility components (that is, endogenous states, structural shocks, and their innovations), S̃ =

(S ′,0′,0′)′ is its steady state, and ˜̂Sit = S̃it− S̃ is its deviation from the steady state. Let us define

ñs = n+ 2m. The matrix Ψ̃1
y,j is a 1× ñs vector that represents the first-order component of the

second-order approximation to the law of motion for the measurement equation as a function of

˜̂St, where S̃t =
(
S ′t,Z ′t−1, E ′t

)′
and ˜̂St = S̃t − S̃, for j = 1, . . . , k. The matrix Ψ̃2,1

y,j is an ñs × ñs
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matrix that represents the second-order component of the second-order approximation to the law

of motion for the measurement equation as a function of ˜̂St for j = 1, . . . , k. The matrix Ψ̃2,2
y,j is

an m×m matrix that represents the second-order component of the second-order approximation

to the law of motion for the measurement equation as a function of Et and Σt−1 for j = 1, . . . , k.

The matrix Ψ̃2,3
y,j is an m×m matrix that represents the second-order term of the approximated

law of motion for the measurement equation as a function of Et and Ut for j = 1, . . . , k.

We are now ready to show that the system (22) is linear, and if a rank condition is satisfied,

it has only one solution.

Define

A
(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
)

≡ Yt − Y−


Ψ̃1
y,1
˜̂Sit
...

Ψ̃1
y,k
˜̂Sit

−
1

2


˜̂Si′t Ψ̃2,1

y,1
˜̂Sit

...

˜̂Si′t Ψ̃2,1
y,k
˜̂Sit

−
1

2


ΨΛ
y,1

...

ΨΛ
y,k

−


εi′t Ψ̃2,2
y,1

...

εi′t Ψ̃2,2
y,k

σit−1

and

B
(
εit; γ

)
≡
( (

εi′t Ψ̃2,3
y,1

)′
. . .

(
εi′t Ψ̃2,3

y,k

)′ )′
.

Let k = m, then B (εit; γ) is a k×k matrix. If B (εit; γ) is full rank, the solution to the system (22)

can be written as

Ut = B−1
(
εit; γ

)
A
(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
)
.

The next theorem shows how to use this solution to evaluate the approximated measurement

density.
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Theorem 5. Let k = m, then B (εit; γ) is a k×k matrix. If B (εit; γ) is full rank, the approximated

measurement density can be written as

p
(
Yt = Yt|sit, zit−1, σ

i
t−1, ε

i
t; γ
)

= detB−1
(
εit; γ

)
p
(
Ut = B−1

(
εit; γ

)
A
(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
))
(23)

for each draw in
{
sit, z

i
t−1, σ

i
t−1, ε

i
t

}N
i=1
for all t ∈ {1, . . . , T}, which can be evaluated given that we

know B−1 (εit; γ), A
(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
)
, and the distribution of Ut.

Proof. The theorem is a straightforward application of the change of variables theorem.

Theorem 5 shows that requirement 1 in assumption 1 holds and, thus, we can apply our particle

filter. We are also requiring B (εit; γ) to be full rank. When can B (εit; γ) not be full rank? B (εit; γ)

would fail to have full rank when the impact of volatility innovations is identical across several

elements of Yt. This would mean that Yt lacks enough information to tell volatility shocks apart

and that, to estimate the model, we need a new set of observables.

Note that theorem 5 assumes k = m. Given the notation in section 2.1, this means that the

number of structural shocks equals the number of observables. This is not always necessary. What

the theorem needs is that the number of volatility shocks equals the number of observables. Since,

to simplify notation, we have assumed that all structural shocks face volatility shocks, the number

of structural shocks equals the number of observables. As mentioned in section 2.1, we could have

structural shocks that do not face volatility shocks (this will be the case in our application to

follow). In that case, we could have more structural shocks than observables. From the theorem,

it is also clear that if we used Et rather than Ut to compute the approximated measurement

equation, we would have to solve a quadratic system, a challenging task.

An outline of the algorithm in pseudo-code is:
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Step 0: Set t 1. Sample N values
{
sit, z

i
t−1, σ

i
t−1, ε

i
t

}N
i=1

from p (St,Zt−1,Σt−1, Et; γ).

Step 1: Compute

p
(
Yt = Yt|Yt−1; γ

)
' 1

N

N∑
i=1

detB−1
(
εit; γ

)
p
(
Ut = B−1

(
εit; γ

)
A
(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
))

using expression (23) and the importance weights for each draw

qit =
detB−1 (εit; γ) p

(
Ut = B−1 (εit; γ)A

(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
))∑N

i=1 detB−1 (εit; γ) p
(
Ut = B−1 (εit; γ)A

(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
)) .

Step 2: Sample N times with replacement from
{
sit|t−1, z

i
t−1|t−1, σ

i
t−1|t−1, ε

i
t|t−1

}N
i=1

and

probability {qit}
N
i=1. This delivers

{
sit|t, z

i
t−1|t, σ

i
t−1|t, ε

i
t|t

}N
i=1
.

Step 3: Simulate
{
sit+1, z

i
t, σ

i
t, ε

i
t+1

}N
i=1

from the approximated transition equation

(
S ′t+1,Z ′t,Σ′t, E ′t+1

)′ | (si′t|t, zi′t−1|t, σ
i′
t−1|t, ε

i′
t|t
)′
,F
(
Yt
)

; γ.

Step 4: If t < T, set t t+ 1 and go to step 1. Otherwise stop.

Once we have evaluated the likelihood, we can nest this algorithm either with an McMc to

perform Bayesian inference (as done in our application; see Flury and Shephard, 2011, for technical

details) or with some optimization algorithm to undertake maximum likelihood estimation (as

done, in a model without volatility shocks, by Van Binsbergen et al., 2012). In this last case, care

must be taken to use an optimization algorithm that does not rely on derivatives, as the particle

filter implies an evaluation of the likelihood function that is not differentiable.
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4. Comparison with Continuous-Time Models

As is common in the business-cycle literature, we wrote our generic dynamic equilibrium model

in discrete time. However, much research in finance and, increasingly, in macroeconomics is

using continuous-time models. Thus, it is useful to sketch how we could adapt our framework to

continuous time:

1. We would write the equilibrium conditions of the continuous-time model as in equation

(1). The main difference with discrete time is that, often, it is not possible to eliminate

from those conditions the value functions (and their partial derivatives) of the agents of the

model. This is not particularly problematic beyond increasing the number of equilibrium

conditions (as we will need to have the concentrated Hamilton-Bellman-Jacobi equations

defining those value functions in a recursive way).

2. We would solve for the policy functions of the agents using the continuous-time version of

the perturbation method outlined in section 2.4 of this paper. Judd (1998, chapters 13 and

14) discusses how to apply perturbation methods to continuous-time dynamic equilibrium

models. Parra-Álvarez (2013) applies the method to the solution of business cycle models.

The solution of the model would give us a multivariate diffusion process for the evolution of

the states (the equivalent of our transition equation 12) and a density for the observables

(the equivalent of our transition equation 7).2

3. We would then use the diffusion process and the density to build a continuous-time state-

space representation analogous to equations (14) and (15). This is done, for example, in

Chib, Pitt, and Shephard (2010) for several finance models.

2Another possibility would be solving the Hamilton-Bellman-Jacobi equation of the agents using a projection
method as in Fernández-Villaverde, Rubio-Ramírez, and Posch (2013).

24



4. We would then use the methods proposed by Aït-Sahalia (2002 and 2008), and Aït-Sahalia

and Kimmel (2007) to find closed-form expansions for the log-likelihood function of the

model. As documented in those papers, since the coeffi cients of the expansion are cal-

culated explicitly by exploiting the special structure afforded by the diffusion model, the

computations are fast and effi cient. Then, we can either maximize the log-likelihood or nest

it inside an McMc algorithm (Stramer, Bognar, and Schneider, 2010).

While this approach is promising, it has not been applied in macroeconomics and it remains

to assess its performance in real-life applications. In comparison, the discrete-time approach to

the solution and estimation of dynamic equilibrium models has been tested in dozens of empirical

applications. Therefore (and in addition to the fact that discrete time is still more popular in

macroeconomics), we prefer to explore how to handle dynamic equilibrium models with stochastic

volatility first in a discrete-time framework and leave the analysis of the continuous-time case for

ongoing research.

5. An Application: A Business Cycle Model with Stochastic Volatility

As an illustration of our procedure, we estimate a business cycle model of the U.S. economy with

nominal rigidities and stochastic volatility. We will show: 1) how we can characterize posterior

distributions of the parameters of interest and 2) how we can recover and analyze the smoothed

structural and volatility shocks. Those are two of the most relevant exercises in terms of the

estimation of dynamic equilibrium models. Once the estimation has been undertaken, there are

many potential exercises. For instance, in the appendix, we include several of them such as: 1)

finding the impulse response functions (IRFs) of the model; 2) evaluating the fit of the model

in comparison with some alternatives; and 3) building counterfactuals and running alternative
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histories of the evolution of the U.S. economy.

The model we present is a natural example for this paper because it is the base of much applied

policy analysis. We will depart only along two dimensions from the standard specification: we

will have stochastic volatility in the shocks that drive the dynamics of the economy and parameter

drifting in the monetary policy rule. In that way, the likelihood has the chance of picking between

two of the alternatives that the literature has highlighted to account for the well-documented

time-varying volatility of the U.S. aggregate time series, either a reduced volatility of the shocks

that hit the economy (Sims and Zha, 2006) or a different monetary policy (Clarida et al., 2000),

which makes the application of interest in itself.

5.1. Households

The economy is populated by a continuum of households indexed by j and preferences:

E0

∞∑
t=0

βtdt

{
log (cjt − hcjt−1) + υ log

(
mjt

pt

)
− ϕtψ

l1+ϑ
jt

1 + ϑ

}
,

which are separable in consumption, cjt, real money balances, mjt/pt, and hours worked, ljt. In

our notation, E0 is the conditional expectations operator, β is the discount factor, h controls habit

persistence, ϑ is the inverse of the Frisch labor supply elasticity, dt is a shifter to intertemporal

preference that follows log dt = ρd log dt−1 +σdσdtεdt where εdt ∼ N (0, 1), and ϕt is a labor supply

shifter that evolves as logϕt = ρϕ logϕt−1 + σϕσϕtεϕt where εϕt ∼ N (0, 1). The two preference

shocks are common to all households.

The principal novelty of these preferences is that, for both shifters dt and ϕt, the standard

deviations, σdt and σϕt, of their innovations, εdt and εϕt, are indexed by time; that is, they
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stochastically move according to:

log σdt = ρσd log σdt−1 +
(
1− ρ2

σd

) 1
2 ηdudt where udt ∼ N (0, 1)

and

log σϕt = ρσϕ log σϕt−1 +
(

1− ρ2
σϕ

) 1
2
ηϕuϕt where uϕt ∼ N (0, 1).

This parsimonious specification introduces only four new parameters, ρσd , ρσϕ, ηd, and ηϕ, while

being surprisingly powerful in capturing important features of the data (Shephard, 2008). All the

shocks and innovations throughout the model are observed by the agents when they are realized.

Agents have, as well, rational expectations about how these shocks (and all the other shocks to the

economy) evolve over time. We can interpret the shocks to preferences and to their volatility as

reflecting the random evolution of more complicated phenomena, such as changing demographics

(see Fernández-Villaverde and Rubio-Ramirez, 2008).

Although we assume complete financial markets, to ease notation we drop the Arrow securities

implied by that assumption from the budget constraints (they are in net zero supply at the

aggregate level). Households also hold bjt government bonds that pay a nominal gross interest

rate of Rt−1. Therefore, the j − th household’s budget constraint is given by:

cjt + xjt +
mjt

pt
+
bjt+1

pt
= wjtljt +

(
rtujt − µ−1

t Φ [ujt]
)
kjt−1 +

mjt−1

pt
+Rt−1

bjt
pt

+ Tt +zt

where xt is investment, wjt is the real wage, rt is the real rental price of capital, ujt > 0 is the

rate of use of capital, µ−1
t Φ [ujt] is the cost of using capital at rate ujt in terms of the final good,

µt, is an investment-specific technological level, Tt is a lump-sum transfer, and zt is firms’profits.

We specify that Φ [u] = Φ1 (u− 1) + Φ2

2
(u − 1)2, a form that satisfies that Φ [1] = 0, Φ′ [·] = 0,
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and Φ′′ [·] > 0. This function carries the normalization that u = 1 in the balanced growth path of

the economy. Using the relevant first-order conditions, we can find Φ1 = Φ′ [1] = r̃ where r̃ is the

(rescaled) steady-state rental price of capital (determined by the other parameters in the model).

This leaves us with only one free parameter, Φ2.

Given a depreciation rate δ and an investment adjustment cost parameter κ, the capital

accumulated by household j at the end of period t is given by:

kjt = (1− δ) kjt−1 + µt

(
1− κ

2

(
xjt
xjt−1

− Λx

)2
)
xjt.

This function is written in deviations with respect to the balanced growth rate of investment, Λx.

The investment-specific technology level µt, follows a random walk in logs, log µt = Λµ+log µt−1 +

σµσµtεµt with εµt ∼ N (0, 1) and where Λµ is the drift of the process and εµt is the innovation to

its growth rate. The standard deviation σµt also evolves as:

log σµt = ρσµ log σµt−1 +
(

1− ρ2
σµ

) 1
2
ηµuµt where uµt ∼ N (0, 1).

Again, we can interpret this stochastic volatility as a stand-in for a more detailed explanation of

technological progress in capital production that we do not model explicitly.

Each household j supplies a different type of labor services ljt that are aggregated by a labor

packer into homogeneous labor ldt with the production function l
d
t =

(∫ 1

0
l
η−1
η

jt dj

) η
η−1

that is rented

to intermediate good producers at wage wt. The labor packer is perfectly competitive and it takes

all wages as given. Households set their wages with a Calvo pricing mechanism. At the start of

every period, a randomly selected fraction 1−θw of households can reoptimize their wages (where,

by a law of large numbers, individual probabilities and aggregate fractions are equal). All other
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households index their wages given past inflation with an indexation parameter χw ∈ [0, 1].

5.2. Firms

There is one final good producer that aggregates a continuum of intermediate goods according to:

yt =

(∫ 1

0

y
ε−1
ε

it di

) ε
ε−1

(24)

where ε is the elasticity of substitution. The final good producer is perfectly competitive and

minimizes its costs subject to the production function (24) and taking as given all intermediate

goods prices pti and the final good price pt.

Each intermediate good is produced by a monopolistic competitor with technology yit =

Atk
α
it−1

(
ldit
)1−α

, where kit−1 is the capital rented by the firm, ldit is the amount of the “packed”

labor input rented by the firm, and At is neutral productivity. Productivity evolves as logAt =

ΛA + logAt−1 + σAσAtεAt where ΛA is the drift of the process and εAt ∼ N (0, 1) is the innovation

to its growth rate. The time-varying standard deviation of this innovation follows:

log σAt = ρσA log σAt−1 +
(
1− ρ2

σA

) 1
2 ηAuAt where uAt ∼ N (0, 1).

Intermediate good producers meet the quantity demanded by the final good producer by

renting ldit and kit−1 at prices wt and rt. Given their demand function, these producers set prices

to maximize profits. However, when they do so, they follow a Calvo pricing scheme. In each

period, a fraction 1 − θp of intermediate good producers reoptimize their prices. All other firms

partially index their prices by past inflation with an indexation parameter χ ∈ [0, 1].
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5.3. The Monetary Authority

A monetary authority sets the nominal interest rate Rt (as a deviation with respect to R, the

balanced growth path nominal interest rate) by following a Taylor rule:

Rt

R
=

(
Rt−1

R

)γR ((Πt

Π

)γΠγΠ,t
(
ydt
ydt−1

/ exp
(
Λyd
))γyγy,t)1−γR

ξt. (25)

The first term on the right-hand side represents a desire for interest rate smoothing. The second

term responds to the deviation of inflation from its balanced growth path level Π. The third term

is a “growth gap”: the ratio between the growth rate of the economy and Λyd, the balanced path

gross growth rate of ydt , where y
d
t is aggregate demand (defined precisely in appendix 3). The last

term is the monetary policy shock, where log ξt = σξσξ,tεξt with an innovation εξt ∼ N (0, 1) and

a time-varying standard deviation, σξ,t, that follows an autoregressive process

log σξt = ρσξ log σξt−1 +
(

1− ρ2
σξ

) 1
2
ηξuξ,t where uξ,t ∼ N (0, 1).

In this policy rule, we have two drifting parameters: the responses of the monetary authority

to the inflation gap and the growth gap. The parameters drift over time as:

log γΠt = ργΠ
log γΠt−1 + σπεπt and log γyt = ργy log γyt−1 + σyεyt where επt, εyt ∼ N (0, 1).

For simplicity, the volatility of the innovation to this processes is fixed over time. The agents

perfectly observe these changes in monetary policy parameters.
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5.4. Equilibrium and Solution

We characterize the equilibrium of the model in appendix 3. The equilibrium conditions are non-

stationary because we have two unit roots in the processes for technology. We circumvent this

problem by rescaling the model using the variable zt = A
1

1−α
t µ

α
1−α
t in the form: k̃t = kt

ztµt
, c̃t = ct

zt
,

x̃t = xt
zt
, ỹt = yt

zt
, w̃t = wt

zt
, r̃t = µtrt, Ãt = At

exp(ΛA)At−1
, and µ̃t = µt

exp(Λµ)µt−1
. In the notation of

section 2.1 we have that:

1. The states of the (rescaled) economy are

St =
(

log k̃t−1, log c̃t−1, log x̃t−1, log ỹt−1, log υpt−1, log υwt−1, log w̃t−1, logRt−1, log Πt−1

)′
.

2. The structural shocks are Zt =
(

log dt, logϕt, log µ̃t, log Ãt, log ξt, log γΠt, log γyt

)′
. The pa-

rameter drifts are handled as structural shocks in the state-space representation.

3. The volatility shocks are Σt = (log σdt, log σϕt, log σµt, log σAt, log σξt, 0, 0)′ , where the last

two zeros correspond to the processes for parameter drifting, which have constant volatilities

(see also in vector Ut below). Here, we can see that we do not need as many volatility shocks

(5 of them) as structural shocks (7 of them).

4. The innovations to the structural and the volatility shocks are Et = (εdt, εϕt, εµt, εAt, εξt, επt, εyt)
′

and Ut = (udt, uϕt, uµt, uAt, uξt, 0, 0)′, respectively.

We pick as observables the first difference of the log of the relative price of investment, the log

federal funds rate, log inflation, the first difference of log output, and the first difference of log real

wages, in our notation Yt = (−4 log µt, logRt, log Πt,4 log yt,4 logwt)
′ .We select these variables

because they bring us information about aggregate behavior (output), the stance of monetary
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policy (the interest rate and inflation), and the different shocks (the relative price of investment

about investment-specific technological change, the other four variables about technology and

preference shocks) that we are concerned about. Note that we have the same number of observables

as we do of volatility shocks, as required by theorem 5.

Also, note that a second-order approximation is even more relevant in our application than in

the standard case of dynamic equilibrium models with stochastic volatility because a linearization

would also imply that the parameter drift in the Taylor rule would disappear as well from the

equilibrium dynamics (see appendix 4 for more details).

5.5. A User’s Guide to Computing the Results

In this subsection, we outline a user’s guide to the computation of our result. The main steps

involved are:

1. We rescale the equilibrium conditions of the model to make them stationary and write them

in Mathematica.

2. We ask Mathematica to take all the analytic derivatives required to solve for the second-order

approximation of the model. We take advantage of the symbolic computation capabilities

of Mathematica to express them as functions of parameters of the model. In that way,

we do not need to recompute the derivatives, the most time-intensive step, for each set of

parameter values in our estimation.

3. Once we have all the relevant derivatives, we export them into Fortran files. At this stage,

we have a set of Fortran files that solves the second-order approximation of the dynamics

of the model as a function of the parameters (steps 2 and 3 take about 3 hours).
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4. Then, we compile the resulting files with the Intel Fortran Compiler version 10.1.025

with IMSL. Compilation takes about 18 hours. The project has 1798 files and occupies 2.33

Gbytes of memory.

5. Given some parameter values, we use the derivatives from step 3 to solve for the second-order

approximation of the model. For this task, Fortran takes around 5 seconds (remember that

we have 9 states, 7 structural shocks, and 5 volatility shocks).

6. We build, in Fortran, the state-space representation associated with the second-order ap-

proximation.

7. We approximate the likelihood with the particle filter using 10, 000 particles. This number

delivered a good compromise between accuracy and time to compute the likelihood. Hence,

the solution of the model plus the evaluation of one likelihood requires 22 seconds on a Dell

server with 8 processors.

8. We use steps 2 to 7 within a random-walk Metropolis-Hastings algorithm to draw from the

posterior of the parameters. Drawing 5,000 times from the posterior takes around 38 hours.

In order to initialize the chain, we extensively search on a grid parameter for high values of

the likelihood.

The Mathematica and Fortran codes were highly optimized in order to 1) keep the size of

the project within reasonable dimensions (otherwise, the compiler cannot parse the files) and 2)

provide a rapid solution of the model and a fast computation of the likelihood. Perhaps the most

important task in that optimization was the parallelization of the Fortran code using OPENMP

as well as the compilation options: OG (global optimizations) and Loop Unroll. Without the

parallelization, the solution of the model and evaluation of its likelihood take about 70 seconds.
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Also, note that implementing corollary 1 needed in step 7 requires the solution of a linear

system of equations and the computation of a Jacobian. For our application, we found that the

following sequence of LAPACK operations delivered the fastest solution:

1. DGESV (computes the solution to a real system of linear equations A ∗X = B).

2. DGETRI (computes the inverse of a matrix using the LU factorization from the previous line).

3. DGETRF (helps to compute the determinant of the inverse from the previous line).

With respect to the random-walk Metropolis-Hastings, we performed an intensive process of

fine-tuning of the chain, both in terms of initial conditions as well as in terms of getting the right

acceptance level. While the tuning was time-intensive, it did not involve any non-standard step.

The only other important remark is to remember to keep the random numbers used for resampling

in the particle filter constant across draws of the Markov chain. This is required to reduce the

numerical variance of the procedure, which was a serious concern for us given the complexity of

our problem.

5.6. Data and Estimation

We estimate our model using the five time series for the U.S. economy described above. Our

sample covers 1959.Q1 to 2007.Q1, with 192 observations. We stop at 2007 to avoid having to

deal with the financial crisis, which would make it diffi cult to appreciate the points we want to

illustrate about how to econometrically deal with stochastic volatility. This could be fixed at the

cost of a lengthier discussion. Appendix 5 explains how we construct the series.

Once we have evaluated the likelihood, we combine it with a prior. We pick flat priors on

a bounded support for all the parameters. The bounds are either natural economic restrictions
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(for instance, the Calvo and indexation parameters lie between 0 and 1) or are so wide that

the likelihood assigns (numerically) zero probability to values outside them. Bounded flat priors

induce a proper posterior, a convenient feature for our exercises below. We resort to flat priors

for two reasons. First, to reduce the impact of presample information and show that our results

arise mainly from the shape of the likelihood and not from the prior (although, of course, flat

priors are not invariant to reparameterization). Thus, we could interpret our posterior modes

as maximum likelihood point estimates. Second, as we learned in Fernández-Villaverde et al.

(2010c), eliciting priors for stochastic volatility is diffi cult, since we deal with unfamiliar units,

such as the variance of volatility shocks, about which we do not have clear beliefs. Flat priors

come, though, at a price: before proceeding to the estimation, we have to fix several parameters

to reduce the dimensionality of the problem.

Table 5.1 lists the fixed parameters. Our guiding criterion in selecting them was to pick

conventional values. The discount factor, β = 0.99, is a default choice, habit persistence, h = 0.9,

matches the observed sluggish response of consumption to shocks, the parameter controlling the

level of labor supply, ψ = 8, captures the average amount of hours in the data, and the depreciation

rate, δ = 0.025, induces the appropriate capital-output ratio. The elasticities of substitution,

ε = η = 10, deliver average mark-ups of around 10 percent, a common value in these models.

We set the cost of capital utilization, Φ2, to a small number to introduce some curvature in this

decision. Three parameter values are borrowed from Fernández-Villaverde et al. (2009). The

first is the inverse of the Frisch labor elasticity, ϑ = 1.17. This aggregate elasticity is compatible

with the micro data, once we allow for intensive and extensive margins on labor supply. The

second is the coeffi cient of the intermediate goods production function, α = 0.21. This value is

lower than the common calibration in real business cycle models because, in our environment, we
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have positive profits that appear as capital income in the National Income and Product Accounts.

Finally, the adjustment cost, κ = 9.5, is in line with other estimates from similar models (κ would

be particularly hard to identify, since investment is not one of our observables).

The autoregressive parameter of the evolution of the response to inflation, ργΠ
, is set to 0.95.

In preliminary estimations, we discovered that the likelihood pushed this parameter to 1. When

this happened, the simulations became numerically unstable: after a series of positive innovations

to log γΠt, the reaction of nominal interest rates to inflation could be too tepid for too long. The

0.95 value seems to be the highest value of ργΠ
such that the problem does not appear. The

last two parameters, ργy and σy, are equal to zero because, also in exploratory estimations, the

likelihood favored values of σy ≈ 0. Thus, we decided to forget about them and make γy,t = 1.

To find the posterior, we proceed as follows. First, we define a grid of parameter values and

check for the regions of high posterior density by evaluating the likelihood function in each point

of the grid. This is a time-consuming procedure, but it ensures that we are searching in the right

zone of the parameter space. Once we have identified the global maximum in the grid, we initialize

a random-walk Metropolis-Hastings algorithm from this point. After an extensive fine-tuning of

the algorithm, we use 10,000 draws from the chain to compute posterior moments.

5.7. Results I: Parameter Estimates

Our first empirical result is the parameter estimates. To ease the discussion, we group them in

different tables, one for each set of parameters dealing with related aspects of the model. In all

cases, we report the mode of the posterior and the standard deviation in parenthesis below (in

the interest of space, we do not include the whole histograms of the posterior).

Table 5.2 presents the results for the nominal rigidities and the stochastic processes for the

structural shock parameters. Our estimates indicate an economy with substantial rigidities in

36



prices, which are reoptimized roughly once every five quarters, and in wages, which are reoptimized

approximately every three quarters. Moreover, since the standard deviations are small, there is

enough information in the data about this result. At the same time, there is a fair amount of

indexation, between 0.62-0.63, which brings a strong persistence of inflation. While it is tempting

to compare our estimates with the micro evidence on the individual duration of prices, in our

model all prices and wages change every quarter. That is why, to a naive observer, our economy

would look like one displaying tremendous price flexibility.

We estimate a low persistence of the intertemporal preference shock and a high persistence of

the intratemporal one. The low estimate of ρd produces the quick variations in marginal utilities

of consumption that match output growth and inflation fluctuations. The intratemporal shock

is persistent to account for long-lived movements in hours worked. We estimate mean growth

rates of technology of 0.0034 (neutral) and 0.0028 (investment-specific). Those numbers give us

an average growth of the economy of 0.44 percent per quarter (0.46 in the data). Technology

shocks, in our model, are deviations with respect to these drifts. Thus, we estimate that At

falls in only 8 of the 192 quarters in our sample (which roughly corresponds to the percentage of

quarters where measured productivity falls in the data), even if we estimate negative innovations

to neutral technology in 103 quarters.

The results for the parameters of the stochastic volatility processes appear in table 5.3. In

all cases, the ρ’s and the η’s are far away from zero: the likelihood strongly favors values where

stochastic volatility plays an important role. The standard deviations of the innovations of the

intertemporal preference shock and of the monetary policy shock are the most persistent, while the

standard deviation of the innovation of the intratemporal preference shock is the least persistent.

The standard deviation of the innovations of the volatility shock to the intratemporal preference
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shock, ηϕ = 2.8316, is large: the model asks for fast changes in the size of movements in marginal

utilities of leisure to reproduce the hours data.

In table 5.4., we have the estimates of the policy parameters. The autoregressive component

of the federal funds rate is high, 0.7855, although somewhat smaller than in estimations without

parameter drift. The value of γy (0.24 in levels) is similar to other results in the literature and

shows that the likelihood clearly likes parameter drifting, although with mild persistence. The

estimated value of Π plus the correction on equilibrium inflation implied by second-order effects

of the solution match the average inflation in the data.3 Finally, the estimated value of γΠ (1.045

in levels) guarantees local determinacy of the equilibrium even if γΠ,t is temporarily below 1 (see

appendix ?? for details).

In appendix 6.2 we plot the impulse response functions of the model implied by our estimates.

This exercise allows us to check that the estimates are sensible and that the behavior of the model

is consistent with the behavior of related models in the literature. In appendix 6.3 we compare our

model against an alternative version without parameter drifting but still with stochastic volatility.

That is, we ask whether, once we have included stochastic volatility, it is still important to allow

for changes in the monetary policy rule to account for the time-varying volatility of U.S. aggregate

data over the last several decades. The results show that, even after controlling for stochastic

volatility, the data strongly prefer a specification where the monetary policy rule has changed over

time. In appendix 6.4 we show that this finding does not imply that volatility shocks did not play

an important role in the time-varying volatilities of U.S. aggregate time series. In other words,

both stochastic volatility and parameter drifting are key parts of a successful dynamic equilibrium

3Also, these second-order effects complicate the introduction of time-variation in Π. The likelihood wants to
match the moments of the ergodic distribution of inflation, not the level of Π, which is inflation along the balanced
growth path. When we have non-linearities, the mean of that ergodic distribution may be far from Π. Thus,
learning about Π is hard. Learning about a time-varying Π is even harder.
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model of the U.S. economy.

5.8. Results II: Smoothed Shocks

Figure 5.1 reports the log-deviations with respect to their means for the smoothed intertemporal,

intratemporal, and monetary shocks and deviations of the growth rate of the investment and

technological shocks with respect to their means (±2 standard deviations). We color different

vertical bars to represent each of the periods at the Federal Reserve: the Martin years from the

start of our sample in 1959 to the appointment of Burns in February 1970 (white), the Burns-Miller

era (light blue), the Volcker interlude from August 1979 to August 1987 (grey), the Greenspan

times (orange), and Bernanke’s tenure from February 2006 (yellow).

We see in the top left panel of figure 5.1 that the intertemporal shock, log dt, is particularly high

in the 1970s. This increases households’desire for current consumption (for instance, because of

the entrance of baby boomers into adulthood). A higher aggregate demand triggers, in the model,

the higher inflation observed in the data for those years. The shock has a dramatic drop in the

second quarter of 1980. This is precisely the quarter in which the Carter administration invoked

the Credit Control Act (March 14, 1980). Schreft (1990) documents that this measure caused

turmoil in financial markets and, most likely, distorted intertemporal choices of households, which

is reflected in the large negative innovation to log dt. The low values of log dt in the 1990s with

respect to the 1970s and 1980s eased the inflationary pressures in the economy.

The shock to the utility of leisure, logϕt, grows in the 1970s and falls in the 1980s to stabilize

at a very low value in the 1990s. The likelihood wants to track, in this way, the path of average

hours worked: low in the 1970s, increasing in the 1980s, and stabilizing in the 1990s. Higher hours

also lower the marginal cost of firms (wages fall relative to the technology level). The reduction

in marginal costs also helped to reduce inflation during Greenspan’s tenure.
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The evolution of the investment-specific technology, log µ̃t, shows a sharp drop after 1973 (when

it is likely that energy-intensive capital goods suffered the consequences of the oil shocks in the form

of economic obsolescence) and large positive realizations in the late 1990s (our model interprets

the sustained boom of those years as the consequence of strong improvements in investment

technology). These positive realizations were an additional help to contain inflation during the

1990s. In comparison, the neutral-technology shocks, log Ãt, have been stable since 1959, with

only a few big shocks at the end of the sample.

The evolution of the monetary policy shock, log ξt, reveals large innovations in the early 1980s.

This is due both to the fast change in policy brought about by Volcker and to the fact that a Taylor

rule might not fully capture the dynamics of monetary policy during a period in which money

growth targeting was attempted. Sims and Zha (2006) also find that the Volcker period appears

to be one with large disturbances to the policy rule and argue that the Taylor rule formalism can

be a misleading perspective from which to view policy during that time. Our evidence from the

estimated intertemporal, intratemporal, and investment shocks suggests that monetary authorities

faced a more diffi cult environment in the 1970s and early 1980s than in the 1990s.

As a way to gauge the level of uncertainty of our smoothed estimates, we also plot in figure 5.1

the same shock (±2 standard deviations). In all cases, the data are informative about the history

we just narrated.

We plot, in figure 5.2, the evolution of the volatility shocks, all of them in log-deviations with

respect to their estimated means (plus/minus two standard deviations). We see in this figure

that the standard deviation of the intertemporal shock was particularly high in the 1970s and

only slowly went down during the 1980s and early 1990s. By the end of the sample, the standard

deviation of the intertemporal shock was roughly at the level where it started. In comparison, the
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standard deviation of all the other shocks is relatively stable except, perhaps, for a large drop in

the standard deviation of the monetary policy shock in the early 1980s as well as large changes in

the standard deviation of the investment shock during the period of the oil price shocks. Hence,

the 1970s and the 1980s were more volatile than the 1960s and the 1990s, creating a tougher

environment for monetary policy. This result also confirms Blanchard and Simon’s (2001) and

Nason and Smith’s (2008) observation that volatility had a downward trend in the 20th century

with an abrupt and temporal increase in the 1970s. Also, from the size of the plus/minus two

standard deviations, we conclude that the big movements in the different series that we report

can be ascertained with a reasonable degree of confidence.

Finally, in figure 5.3, we plot the evolution of the response of monetary policy to inflation

plus/minus a two-standard-deviation interval. In particular, we graph γΠγΠt. This graph shows

us an intriguing narrative. The parameter started the sample around its estimated mean, slightly

over 1, and it grew more or less steadily during the 1960s until reaching a peak in early 1968.

After that year, it suffered a fast collapse that took it below 1 in 1971. To put this evolution in

perspective, it is useful to remember that Burns was appointed chairman in February 1970. The

parameter stayed below 1 for all of the 1970s. The arrival of Volcker is quickly picked up by our

smoothed estimates: it increases to over 2 after a few months and stays high during all the years of

Volcker’s tenure. Our estimate captures well the observation by Goodfriend and King (2007) that

monetary policy tightened in the spring of 1980 as inflation and long-run inflation expectations

continued to grow. Its level stayed roughly constant at this high during the remainder of Volcker’s

tenure. But as quickly as it rose when Volcker arrived, it went down again when he departed.

Greenspan’s tenure at the Fed meant that, by 1990, the response of the monetary authority to

inflation was again below 1. Moreover, our estimates are relatively tight. Fernández-Villaverde et
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al. (2010a) discuss how the results of the estimation relate to historical evidence.

6. Conclusion

In this paper, we have shown how to estimate dynamic equilibrium models with stochastic volatil-

ity. The key to the procedure is to realize that a second-order perturbation to the solution of this

class of models has a very particular structure that can be easily exploited to build an effi cient

particle filter. The recent boom in the literature on dynamic equilibrium models with stochastic

volatility suggests that this procedure may have many uses. Our characterization of the solution

might also be, on many occasions, of interest in itself to understand the dynamic properties of

the equilibrium even if the researcher does not want to estimate the model.

As an application to illustrate how the procedure works we have estimated a business cycle

model with both stochastic volatility in the structural shocks that drive the economy and para-

meter drifting in the monetary policy rule. Such a model is motivated by the need to have an

empirical framework where we can account for the time-varying volatility of U.S. aggregate time

series. In particular, we have explained how you obtain point estimates in such a model and how

to recover and analyze the smoothed structural and volatility shocks. Finally, through different

comments -even if brief and not exhaustive- we have discussed the different empirical lessons that

one can learn from all these steps.
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Table 3.1: Second Derivatives

StSt 6= 0 StZt−1 6= 0 StΣt−1 = 0 StEt 6= 0 StUt = 0 StΛ = 0

Zt−1Zt−1 6= 0 Zt−1Σt−1 = 0 Zt−1Et 6= 0 Zt−1Ut = 0 Zt−1Λ = 0

Σt−1Σt−1 = 0 Σt−1Et 6= 0∗ Σt−1Ut = 0 Σt−1Λ = 0

EtEt 6= 0 EtUt 6= 0∗ EtΛ = 0

UtUt = 0 UtΛ = 0

ΛΛ 6= 0

Table 5.1: Fixed Parameters

β h ψ ϑ δ α κ ε η Φ2 ργΠ
ργy σy

0.99 0.9 8 1.17 0.025 0.21 9.5 10 10 0.001 0.95 0 0

Table 5.2: Posterior, Parameters of Nominal Rigidities and Structural Shocks

θp χ θw χw ρd ρϕ Λµ ΛA

0.8139
(0.0143)

0.6186
(0.024)

0.6869
(0.0432)

0.6340
(0.0074)

0.1182
(0.0049)

0.9331
(0.0425)

0.0034
(6.6e−5)

0.0028
(4.1e−5)

Table 5.3: Posterior, Parameters of the Stochastic Processes for Volatility Shocks

log σd log σϕ log σµ log σA log σξ

−1.9834
(0.0726)

−2.4983
(0.0917)

−6.0283
(0.1278)

−3.9013
(0.0745)

−6.000
(0.1471)

ρσd ρσϕ ρσµ ρσa ρσξ

0.9506
(0.0298)

0.1275
(0.0032)

0.7508
(0.035)

0.2411
(0.005)

0.8550
(0.0231)

ηd ηϕ ηµ ηa ηξ

0.1007
(0.0083)

2.8316
(0.0669)

0.3115
(0.006)

0.7720
(0.013)

0.5723
(0.0185)
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Table 5.4: Posterior, Policy Parameters

γR log γy Π log γΠ σπ

0.7855
(0.0162)

−1.4034
(0.0498)

1.0005
(0.0043)

0.0441
(0.0005)

0.145
(0.002)
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Figure 5.1: Smoothed intertemporal (log dt) shock, intratemporal ( logϕt) shock, investment-specific

(log µ̃t) shock, technology ( log Ãt) shock, and monetary policy (log ξt) shock +/- 2 s.d.
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Figure 5.2: Smoothed standard deviation shocks to the intertemporal (log σdt) shock, the intratemporal

(log σφt) shock, the investment-specific (log σµt) shock, the technology (log σAt) shock, and the

monetary policy (log σξt) shock +/- 2 s.d.
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Figure 5.3: Smoothed path for the Taylor rule parameter on inflation +/- 2 standard deviations.
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1. Technical Appendix (Not for Publication)

This technical appendix is organized as follows. First, it presents the proofs of theorems 2 and 3.

Second, it describes the equilibrium of the model in more detail. Third, it shows how parameter

drifting in the monetary policy rule does not appear in the first-order approximation. Fourth, it

offers details on how we built the data. Finally, it includes some additional empirical results.

2. Proofs

2.1. Theorem 2

We start by proving theorem 2, which characterizes the first-order derivatives of the policy func-

tions h and g evaluated at the steady state. We first show that the first partial derivatives of h

and g with respect to any component of Σt−1, Ut, or Λ evaluated at the steady state are zero (in

other words, that the first-order approximation of the policy functions do not depend on volatility

shocks nor their innovations nor on the perturbation parameter). Before proceeding, note that

using (2), we can write Zt+1, in a compact manner, as a function of Zt,Σt, Et+1, Ut+1, and Λ

Zt+1 = ς (Zt,Σt,ΛEt+1,ΛUt+1; γ) , (26)

that using (3) Σt+1 can be expressed as a function of Σt, Ut+1, and Λ

Σt+1 = ϑΣt + ηΛUt+1, (27)

that using (4) we can write Zt as a function of Zt−1,Σt−1, Et, and Ut

Zt = ς (Zt−1,Σt−1, Et,Ut; γ) , (28)

and that using (5) Σt can be expressed as

Σt = ϑΣt−1 + ηUt (29)

where ϑ and η are both m × m diagonal matrices with diagonal elements equal to ϑi and(
1− ϑ2

i

) 1
2 ηi respectively. If we substitute the policy functions (6)-(8) and (26)-(29) into the

1



set of equilibrium conditions (1), we get that

F (St,Zt−1,Σt−1, Et,Ut,Λ) ≡

Etf


g (h (St,Zt−1,Σt−1, Et,Ut,Λ) , ς (Zt−1,Σt−1, Et,Ut) , ϑΣt−1 + ηUt,ΛEt+1,ΛUt+1,Λ) ,

g (St,Zt−1,Σt−1, Et,Ut,Λ) , h (St,Zt−1,Σt−1, Et,Ut,Λ) ,St,

ς (ς (Zt−1,Σt−1, Et,Ut) , ϑΣt−1 + ηUt,ΛEt+1,ΛUt+1) , ς (Zt−1,Σt−1, Et,Ut)

 = 0

where, to ease notation, we do not explicitly write that the functions above depend on γ.

Proof. We want to show that

[
hΣt−1

]i1
j

=
[
gΣt−1

]i2
j

= [hUt ]
i1
j = [gUt ]

i2
j = [hΛ]i1 = [gΛ]i2 = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

We show this result in three steps that basically repeat the same argument based on the

homogeneity of a system of linear equations:

1. We write the derivative of the i− th element of F with respect to the j− th element of Σt−1

as

[
FΣt−1

]i
j

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΣt−1

]i1
j

+
[
gΣt−1

]i2
j
ϑj

)
+[fYt ]

i
i2

[
gΣt−1

]i2
j

+
[
fSt+1

]i
i1

[
hΣt−1

]i1
j

= 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. This is a homogeneous system on
[
hΣt−1

]i1
j

and
[
gΣt−1

]i2
j
for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Thus

[
hΣt−1

]i1
j

=
[
gΣt−1

]i2
j

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

2. We write the derivative of the i− th element of F with respect to the j − th element of Ut
as

[FUt ]
i
j =

[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hUt ]
i1
j +

[
gΣt−1

]i2
j

(
1− ϑ2

j

) 1
2 ηj

)
+ [fYt ]

i
i2

[gUt ]
i2
j +

[
fSt+1

]i
i1

[hUt ]
i1
j = 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. Since we have already shown that
[
gΣt−1

]i2
j

=

2



0 for i2 ∈ {1, . . . , k} and j ∈ {1, . . . ,m}, this is a homogeneous system on [hUt ]
i1
j and [gUt ]

i2
j

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Thus

[hUt ]
i1
j = [gUt ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

3. Finally, we write the derivative of the i− th element of F with respect to Λ as

[FΛ]i =
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hΛ]i1 + [gΛ]i2
)

+ [fYt ]
i
i2

[gΛ]i2 +
[
fSt+1

]i
i1

[hΛ]i1 = 0

for i ∈ {1, . . . , k + n+m}. Since this is a homogeneous system on [hΛ]i1 and [gΛ]i2 for

i1 ∈ {1, . . . , n} and i2 ∈ {1, . . . , k}, we have that

[hΛ]i1 = [gΛ]i2 = 0

for i1 ∈ {1, . . . , n} and i2 ∈ {1, . . . , k}.

2.2. Theorem 3

Let us now prove theorem 3. We show, among other things, that the second partial derivatives of

h and g with respect to either log σit or ui,t and any other variable but εi,t are also zero for any

i ∈ {1, . . . ,m}. We divide the proof into three parts.

Proof, part 1. The first part of the proof deals with the cross-derivatives of the policy

functions h and g with respect to Λ and any of St, Zt−1, Σt−1, Et, or Ut and it shows that all of

them are equal to zero. In particular, we want to show that

[hΛ,St ]
i1
j = [gΛ,St ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . , n} and

[
hΛ,Zt−1

]i1
j

=
[
gΛ,Zt−1

]i2
j

=
[
hΛ,Σt−1

]i1
j

=
[
gΛ,Σt−1

]i2
j

= [hΛ,Et ]
i1
j = [gΛ,Et ]

i2
j = [hΛ,Ut ]

i1
j = [gΛ,Ut ]

i2
j = 0

3



for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

We show this result in five steps. We again exploit the homogeneity of a system of linear

equations.

1. We consider the cross-derivative of the i− th element of F with respect to Λ and the j − th

element of St

[FΛ,St ]
i
j =

[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hΛ,St ]
i1
j + [gΛ,St ]

i2
i1

[hSt ]
i1
j

)
+ [fYt ]

i
i2

[gΛ,St ]
i2
j +

[
fSt+1

]i
i1

[hΛ,St ]
i1
j = 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . , n}. This is a homogeneous system on [hΛ,St ]
i1
j

and [gΛ,St ]
i2
j for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . , n}. Thus

[hΛ,St ]
i1
j = [gΛ,St ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . , n}.

2. We consider the cross-derivative of the i− th element of F with respect to Λ and the j − th

element of Zt−1

[
FΛ,Zt−1

]i
j

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΛ,Zt−1

]i1
j

+ [gΛ,St ]
i2
i1

[
hZt−1

]i1
j

+
[
gΛ,Zt−1

]i2
j
ρj

)
+ [fYt ]

i
i2

[
gΛ,Zt−1

]i2
j

+
[
fSt+1

]i
i1

[
hΛ,Zt−1

]i1
j

= 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. Since [gΛ,St ]
i2
j = 0 for i2 ∈ {1, . . . , k} and

j ∈ {1, . . . , n}, this is a homogeneous system on
[
hΛ,Zt−1

]i1
j
and

[
gΛ,Zt−1

]i2
j
for i1 ∈ {1, . . . , n},

i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Hence

[
hΛ,Zt−1

]i1
j

=
[
gΛ,Zt−1

]i2
j

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

3. We consider the cross-derivative of the i− th element of F with respect to Λ and the j − th

4



element of Σt−1

[
FΛ,Σt−1

]i
j

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΛ,Σt−1

]i1
j

+
[
gΛ,Σt−1

]i2
j
ϑj

)
+ [fYt ]

i
i2

[
gΛ,Σt−1

]i2
j

+
[
fSt+1

]i
i1

[
hΛ,Σt−1

]i1
j

= 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. This is a homogeneous system on
[
hΛ,Σt−1

]i1
j

and
[
gΛ,Σt−1

]i2
j
for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Hence

[
hΛ,Σt−1

]i1
j

=
[
gΛ,Σt−1

]i2
j

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

4. We consider the cross-derivative of the i− th element of F with respect to Λ and the j − th

element of Et

[FΛ,Et ]
i
j =

[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hΛ,Et ]
i1
j + [gΛ,St ]

i2
i1

[hEt ]
i1
j +

[
gΛ,Zt−1

]i2
j
σj expϑj log σj,t−1

)
+ [fYt ]

i
i2

[gΛ,Et ]
i2
j +

[
fSt+1

]i
i1

[hΛ,Et ]
i1
j = 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. Since
[
gΛ,Zt−1

]i2
j

= 0 for i2 ∈ {1, . . . , k} and

j ∈ {1, . . . ,m} and [gΛ,St ]
i2
j = 0 for i2 ∈ {1, . . . , k} and j ∈ {1, . . . , n}, this is a homogeneous

system on [hΛ,Et ]
i1
j and [gΛ,Et ]

i2
j for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Thus

[hΛ,Et ]
i1
j = [gΛ,Et ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

5. We consider the cross-derivative of the i− th element of F with respect to Λ and the j − th

element of Ut

[FΛ,Ut ]
i
j =

[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hΛ,Ut ]
i1
j +

[
gΛ,Σt−1

]i2
j

(
1− ϑ2

j

) 1
2 ηj

)
+ [fYt ]

i
i2

[gΛ,Ut ]
i2
j +

[
fSt+1

]i
i1

[hΛ,Ut ]
i1
j = 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. Since we have shown that
[
gΛ,Σt−1

]i2
j

= 0 for

5



i2 ∈ {1, . . . , k} and j ∈ {1, . . . ,m} , we have that the above system is a homogeneous system

on [hΛ,Ut ]
i1
j and [gΛ,Ut ]

i2
j for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Then

[hΛ,Ut ]
i1
j = [gΛ,Ut ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

Proof, part 2. The second part of the proof deals with the cross-derivatives of the policy

functions h and g with respect to Σt−1 and any of St, Zt−1, Σt−1, or Et and it shows that all of

them are equal to zero with one exception. In particular, we want to show that

[
hSt,Σt−1

]i1
j1,j2

=
[
gSt,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m},

[
hZt−1,Σt−1

]i1
j1,j2

=
[
gZt−1,Σt−1

]i2
j1,j2

=
[
hΣt−1,Σt−1

]i1
j1,j2

=
[
gΣt−1,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}, and

[
hEt,Σt−1

]i1
j1,j2

=
[
gEt,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if j1 6= j2.

We show this result in four steps (and where we have already taken advantage of the terms

that we know to be equal to zero from previous derivations).

1. We consider the cross-derivative of the i−th element of F with respect to the j1−th element

of St and the j2 − th element of Σt−1

[
FSt,Σt−1

]i
j1,j2

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hSt,Σt−1

]i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[hSt ]
i1
j1
ϑj2

)
+ [fYt ]

i
i2

[
gSt,Σt−1

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hSt,Σt−1

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}. This is a homogeneous

system on
[
hSt,Σt−1

]i1
j1,j2

and
[
gSt,Σt−1

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n},

6



and j2 ∈ {1, . . . ,m}. Therefore

[
hSt,Σt−1

]i1
j1,j2

=
[
gSt,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}.

2. We consider the cross-derivative of the i−th element of F with respect to the j1−th element

of Zt−1 and the j2 − th element of Σt−1

[
FZt−1,Σt−1

]i
j1,j2

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hZt−1,Σt−1

]i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[
hZt−1

]i1
j1
ϑj2 +

[
gZt−1,Σt−1

]i2
j1,j2

ρj1ϑj2

)
+ [fYt ]

i
i2

[
gZt−1,Σt−1

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hZt−1,Σt−1

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, and j1, j2 ∈ {1, . . . ,m}. Since we just found that
[
gSt,Σt−1

]i2
j1,j2

=

0 for i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}, this is a homogeneous system

on
[
hZt−1,Σt−1

]i1
j1,j2

and
[
gZt−1,Σt−1

]i2
i2,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈

{1, . . . ,m}. Therefore [
hZt−1,Σt−1

]i1
j1,j2

=
[
gZt−1,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.

3. We consider the cross-derivative of the i−th element of F with respect to the j1−th element

of Σt−1 and the j2 − th element of Σt−1

[
FΣt−1,Σt−1

]i
j1,j2

=[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΣt−1,Σt−1

]i1
j1,j2

+
[
gΣt−1,Σt−1

]i2
j1,j2

ϑj1ϑj2

)
+ [fYt ]

i
i2

[
gΣt−1,Σt−1

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hΣt−1,Σt−1

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m} and j1, j2 ∈ {1, . . . ,m}. This is a homogeneous system on[
hΣt−1,Σt−1

]i1
j1,j2

and
[
gΣt−1,Σt−1

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m},

therefore [
hΣt−1,Σt−1

]i1
j1,j2

=
[
gΣt−1,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.
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4. We consider the cross-derivative of the i−th element of F with respect to the j1−th element

of Et and the j2 − th element of Σt−1 if j1 6= j2

[
FEt,Σt−1

]i
j1,j2

=[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hEt,Σt−1

]i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[hEt ]
i1
j1
ϑj2 +

[
gZt−1,Σt−1

]i2
j1,j2

σj1 expϑj1 log σj1,t−1 ϑj2

)
+ [fYt ]

i
i2

[
gEt,Σt−1

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hEt,Σt−1

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m} and j1, j2 ∈ {1, . . . ,m}. Since we know that
[
gZt−1,Σt−1

]i2
j1,j2

=[
gSt,Σt−1

]i2
j,j2

= 0 for i2 ∈ {1, . . . , k}, j ∈ {1, . . . , n}, and j1, j2 ∈ {1, . . . ,m}, this is a

homogeneous system on
[
hEt,Σt−1

]i1
j1,j2

and
[
gEt,Σt−1

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k},

and j1, j2 ∈ {1, . . . ,m} if j1 6= j2. Therefore

[
hEt,Σt−1

]i1
j1,j2

=
[
gEt,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if j1 6= j2.

Note that if j1 = j2, we have that

[
FEt,Σt−1

]i
j1,j1

=
[
fYt+1

]i
i2
∗

∗

 [gSt ]
i2
i1

[
hEt,Σt−1

]i1
j1,j1

+
[
gSt,Σt−1

]i2
i1,j1

[hEt ]
i1
j1
ϑj1+([

gZt−1,Σt−1

]i2
j1,j1

+
[
gZt−1

]i2
j1

)
σj1 expϑj1 log σj1,t−1 ϑj1


+ [fYt ]

i
i2

[
gEt,Σt−1

]i2
j1,j1

+
[
fSt+1

]i
i1

[
hEt,Σt−1

]i1
j1,j1

+
(

[fZt ]
i
j1

+
[
fZt+1

]i
j1
ρj1

)
σj1 expϑj1 log σj1,t−1 ϑj1 = 0

and since [fZt ]
i
j1
and

[
fZt+1

]i
j1
are different from zero in general for i ∈ {1, . . . , k + n+m}

and j1 ∈ {1, . . . ,m} , we have that this system is not homogeneous and

[
hEt,Σt−1

]i1
j1,j1

=
[
gEt,Σt−1

]i2
j1,j1
6= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1 ∈ {1, . . . ,m}.

Proof, part 3. The final part of the proof deals with the cross-derivatives of the policy
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functions h and g with respect to Ut and any of St, Zt−1, Σt−1, Et, or Ut and it shows that all of

them are equal to zero with one exception. In particular, we want to show that

[hSt,Ut ]
i1
j1,j2

= [gSt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m},

[
hZt−1,Ut

]i1
j1,j2

=
[
gZt−1,Ut

]i2
j1,j2

=
[
hΣt−1,Ut

]i1
j1,j2

=
[
gΣt−1,Ut

]i2
j1,j2

= [hUt,Ut ]
i1
j1,j2

= [gUt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}, and

[hEt,Ut ]
i1
j1,j2

= [gEt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1, j2 ∈ {1, . . . ,m}, and j1 6= j2.

Again, we follow the same steps for each part of the result as before and use our previous

findings regarding which terms are zero.

1. We consider the cross derivative of the i−th element of F with respect to the j1−th element

of St and the j2 − th element of Ut

[FSt,Ut ]
i
j1,j2

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hSt,Ut ]
i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[hSt ]
i1
j1

(
1− ϑ2

j2

) 1
2 ηj2

)
+ [fYt ]

i
i2

[gSt,Ut ]
i2
j1,j2

+
[
fSt+1

]i
i1

[hSt,Ut ]
i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}. Since
[
gSt,Σt−1

]i2
j1,j2

= 0

for i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}, this is a homogeneous system on

[hSt,Ut ]
i1
j1,j2

and [gSt,Ut ]
i2
j1,j2

.Therefore

[hSt,Ut ]
i1
j1,j2

= [gSt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}.

2. We consider the cross-derivative of the i−th element of F with respect to the j1−th element
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of Zt−1 and the j2 − th element of Ut

[
FZt−1,Ut

]i
j1,j2

=

[
fYt+1

]i
i2

 [gSt ]
i2
i1

[
hZt−1,Ut

]i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[hZt ]
i1
j1

(
1− ϑ2

j2

) 1
2 ηj2

+
[
gZt−1,Σt−1

]i2
j1,j2

ρj1
(
1− ϑ2

j2

) 1
2 ηj2


+ [fYt ]

i
i2

[
gZt−1,Ut

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hZt−1,Ut

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, and j1, j2 ∈ {1, . . . ,m}. Since
[
gZt−1,Σt−1

]i2
j1,j2

=
[
gSt,Σt−1

]i2
j,j2

= 0

for i2 ∈ {1, . . . , k}, j ∈ {1, . . . , n}, and j1, j2 ∈ {1, . . . ,m}, this is a homogeneous system on[
hZt−1,Ut

]i1
j1,j2

and
[
gZt−1,Ut

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.

Therefore [
hZt−1,Ut

]i1
j1,j2

=
[
gZt−1,Ut

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.

3. We consider the cross-derivative of the i−th element of F with respect to the j1−th element

of Σt−1 and the j2 − th element of Ut

[
FΣt−1,Ut

]i
j1,j2

=[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΣt−1,Ut

]i1
j1,j2

+
[
gΣt−1,Σt−1

]i2
j1,j2

ϑj1
(
1− ϑ2

j2

) 1
2 ηj2

)
+ [fYt ]

i
i2

[
gΣt−1,Ut

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hΣt−1,Ut

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, and j1, j2 ∈ {1, . . . ,m}. Since
[
gΣt−1,Σt−1

]i2
j1,j2

= 0 for i2 ∈

{1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}, this is a homogeneous system on
[
hΣt−1,Ut

]i1
j1,j2

and[
gΣt−1,Ut

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}. Therefore

[
hΣt−1,Ut

]i1
j1,j2

=
[
gΣt−1,Ut

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1, j2 ∈ {1, . . . ,m}.

4. We consider the cross-derivative of the i−th element of F with respect to the j1−th element
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of Ut and the j2 − th element of Ut

[FUt,Ut ]
i
j1,j2

=[
fYt+1

]i
i2

([
gΣt−1,Σt−1

]i2
j1,j2

(
1− ϑ2

j1

) 1
2 ηj1

(
1− ϑ2

j2

) 1
2 ηj2 + [gSt ]

i2
i1

[hUt,Ut ]
i1
j1,j2

)
+ [fYt ]

i
i2

[gUt,Ut ]
i2
j1,j2

+
[
fSt+1

]i
i1

[hUt,Ut ]
i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m} and j1, j2 ∈ {1, . . . ,m}. Since
[
gΣt−1,Σt−1

]i2
j1,j2

= 0 for i1 ∈

{1, . . . , k} and j1, j2 ∈ {1, . . . ,m}, this is a homogeneous system on [hUt,Ut ]
i1
j1,j2

and [gUt,Ut ]
i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}. Therefore

[hUt,Ut ]
i1
j1,j2

= [gUt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.

5. Finally, consider the cross-derivative of the i− th element of F with respect to the j1 − th

element of Et and the j2 − th element of Ut if j1 6= j2

[FEt,Ut ]
i
j1,j2

=

[
fYt+1

]i
i2

 [gSt ]
i2
i1

[hEt,Ut ]
i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[hEt ]
i1
j1

(
1− ϑ2

j2

) 1
2 ηj2

+
[
gZt−1,Σt−1

]i2
j1,j2

σj1 expϑj1 log σj1,t−1
(
1− ϑ2

j2

) 1
2 ηj2


+ [fYt ]

i
i2

[gEt,Ut ]
i2
j1,j2

+
[
fSt+1

]i
i1

[hEt,Ut ]
i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m} and j1, j2 ∈ {1, . . . ,m}. Since
[
gZt−1,Σt−1

]i2
j1,j2

=
[
gSt,Σt−1

]i2
j,j2

= 0

for i2 ∈ {1, . . . , k}, j ∈ {1, . . . , n}, and j1, j2 ∈ {1, . . . ,m}, this is a homogeneous system

on [hEt,Ut ]
i1
j1,j2

and [gEt,Ut ]
i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if

j1 6= j2. Therefore

[hEt,Ut ]
i2
j1,j2

= [gEt,Ut ]
i1
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if j1 6= j2.
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Note that if j1 = j2, we have that

[FEt,Ut ]
i
j1,j1

=

[
fYt+1

]i
i2

 ([
gZt−1,Σt−1

]i2
j1,j1

+
[
gZt−1

]i2
j1

)
σj1 expϑj1 log σj1,t−1

(
1− ϑ2

j1

) 1
2 ηj1

+
[
gSt,Σt−1

]i2
i1,j1

[hEt ]
i1
j1

(
1− ϑ2

j1

) 1
2 ηj1 + [gSt ]

i2
i1

[hEt,Ut ]
i1
j1,j1


+ [fYt ]

i
i2

[gEt,Ut ]
i2
j1,j1

+
[
fSt+1

]i
i1

[hEt,Ut ]
i1
j1,j1

+
(

[fZt ]
i
j1

+ ρj1
[
fZt+1

]i
j1

)
σj1 expϑj1 log σj1,t−1

(
1− ϑ2

j1

) 1
2 ηj1 = 0

and since [fZt ]
i
j1
and

[
fZt+1

]i
j1
are different from zero in general for i ∈ {1, . . . , k + n+m} and

j1 ∈ {1, . . . ,m} , we have that this system is not homogeneous and hence

[hEt,Ut ]
i2
j1,j1

= [gEt,Ut ]
i1
j1,j1
6= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1 ∈ {1, . . . ,m}.

3. Equilibrium

In this section we describe the equilibrium conditions of the model. First, we introduce the ones

related to the household, then the ones related to the firm and the monetary authority, and finally

we present the market clearing and aggregation conditions.

3.1. Households

We can define two Lagrangian multipliers, λjt, the multiplier associated with the budget con-

straint, and qjt (the marginal Tobin’s Q), the multiplier associated with the investment adjust-

ment constraint normalized by λjt. Thus, the first-order conditions of the household problem with

respect to cjt, bjt, ujt, kjt, and xjt can be written as:

dt (cjt − hcjt−1)−1 − bβEtdt+1 (cjt+1 − hcjt)−1 = λjt, (30)

λjt = βEt{λjt+1
Rt

Πt+1

}, (31)

rt = µ−1
t Φ′ [ujt] , (32)
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qjt = βEt
{
λjt+1

λjt

(
(1− δ) qjt+1 + rt+1ujt+1 − µ−1

t+1Φ [ujt+1]
)}

, (33)

and

1 = qjtµt

(
1− V

[
xjt
xjt−1

]
− V ′

[
xjt
xjt−1

]
xjt
xjt−1

)
+ βEqjt+1µt+1

λjt+1

λjt
V ′
[
xjt+1

xjt

](
xjt+1

xjt

)2

. (34)

The first-order conditions of the “labor packer”imply a demand function for labor:

ljt =

(
wjt
wt

)−η
ldt ∀j

and, together with a zero profit condition wtldt =
∫ 1

0
wjtljtdj, an expression for the wage:

wt =

(∫ 1

0

w1−η
jt dj

) 1
1−η

.

Households follow a Calvo scheme when they set their wages. At the start of every period, a

randomly selected fraction 1− θw of households can reoptimize their wages. All other households

index their nominal wages given past inflation with an indexation parameter χw ∈ [0, 1].

Since we postulated in the main text both complete financial markets for the households

and separable utility in consumption, the marginal utilities of consumption are the same for all

households. Thus, in equilibrium, cjt = ct, ujt = ut, kjt−1 = kt, xjt = xt, qjt = qt, λjt = λt, and

w∗jt = w∗t .

The last two equalities tell us that the shadow cost of consumption is equated across households

and that all households that can reset their wages optimally will do it at the same level w∗t . With

these two results, and after several steps of algebra, we find that the evolution of wages is described

by two recursive equations:

ft =
η − 1

η
(w∗t )

1−η λtw
η
t l
d
t + βθwEt

(
Π
χw
t

Πt+1

)1−η (
w∗t+1

w∗t

)η−1

ft+1 (35)

and

ft = ψdtϕt

(
wt
w∗t

)η(1+ϑ) (
ldt
)1+ϑ

+ βθwEt
(

Π
χw
t

Πt+1

)−η(1+ϑ)(
w∗t+1

w∗t

)η(1+ϑ)

ft+1 (36)

on the auxiliary variable ft.

Taking advantage of the expression for the wage and that, in every period, a fraction 1 − θw
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of households set w∗t as their wage and the remaining fraction θw partially index their nominal

wage by past inflation, we can write the law of motion of real wage as:

w1−η
t = θw

(
Π
χw
t−1

Πt

)1−η

w1−η
t−1 + (1− θw)w∗1−ηt . (37)

3.2. Firms

The final good producer is perfectly competitive and minimizes its costs subject to the production

function (24) and taking as given all intermediate goods prices pti and the final good price pt.

The optimality conditions of this problem result in a demand function for each intermediate good

with the classic form:

yit =

(
pit
pt

)−ε
ydt ∀i

where ydt is the aggregate demand and a price for the final good:

pt =

(∫ 1

0

p1−ε
it di

) 1
1−ε

.

Each of the intermediate goods is produced by a monopolistic competitor. Intermediate good

producers produce the quantity demanded of the good by renting ldit and kit−1 at prices wt and rt.

Then, by minimization, we have a marginal cost of:

mct =

(
1

1− α

)1−α(
1

α

)α
w1−α
t rαt
At

(38)

The marginal cost is constant for all firms and all production levels given At, wt, and rt.

Given the demand function, the intermediate good producers set prices to maximize profits.

However, when they do so, they follow the same Calvo pricing scheme as households. In each

period, a fraction 1 − θp of intermediate good producers reoptimize their prices. All other firms

partially index their prices by past inflation with an indexation parameter χ ∈ [0, 1].

The solution for the firm’s pricing problem has a recursive structure in two new auxiliary

variables g1
t and g

2
t that take the form:

g1
t = λtmcty

d
t + βθpEt

(
Πχ
t

Πt+1

)−ε
g1
t+1, (39)
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g2
t = λtΠ

∗
ty
d
t + βθpEt

(
Πχ
t

Πt+1

)1−ε(
Π∗t

Π∗t+1

)
g2
t+1, (40)

and

εg1
t = (ε− 1)g2

t (41)

where

Π∗t =
p∗t
pt

(42)

is the ratio between the optimal new price (common across all firms that can reset their prices)

and the price of the final good. With this structure, the inflation follows:

1 = θp

(
Πχ
t−1

Πt

)1−ε

+ (1− θp) Π∗1−εt . (43)

3.3. The Monetary Authority

The model is closed with a monetary authority that sets the nominal interest rates by a modified

Taylor rule described in (25).

3.4. Market Clearing and Aggregation

Aggregate demand is given by:

ydt = ct + xt + µ−1
t Φ [ut] kt−1. (44)

By relying on the observation that the capital-labor ratio is constant across firms, we can

derive that aggregate supply is:

yst =
At (utkt−1)α

(
ldt
)1−α − φzt

υpt
(45)

where:

υpt =

∫ 1

0

(
pit
pt

)−ε
di

is the aggregate loss of effi ciency induced by price dispersion of the intermediate goods.

Market clearing requires that

yt = ydt = yst . (46)
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By the properties of Calvo’s pricing:

υpt = θp

(
Πχ
t−1

Πt

)−ε
υpt−1 + (1− θp) Π∗−εt . (47)

Finally, demanded labor is given by:

ldt =
1

υwt

∫ 1

0

ljtdj = lt (48)

where:

υwt =

∫ 1

0

(
wjt
wt

)−η
dj.

is the aggregate loss of labor input induced by wage dispersion among differentiated types of labor.

Again, by Calvo’s pricing, this ineffi ciency evolves as:

υwt = θw

(
wt−1

wt

Π
χw
t−1

Πt

)−η
υwt−1 + (1− θw) (Πw∗

t )−η . (49)

Thus an equilibrium is characterized by equations (30)-(49), the Taylor rule (25), the law of

motion for the structural shocks (augmented with the parameter drifts), and the law of motion

for the volatility shocks.

4. Non-linearities in Parameter Drifting

We argued in the main text that, since we consider the effects of stochastic volatility on our

model, it was of the essence to deal with higher-order approximations. In this section we argue

that higher-order approximations are also key to dealing with parameter drifting in the Taylor

rule. The reason is that parameter drifting disappears from a linear solution. To see this, take

the Taylor rule defined in (25) (assuming only in this paragraph and to simplify notation that

γy = 0 and log σξt = 0) and let us rewrite it:

f
(
R̂t, R̂t−1, Π̂t, γ̂Π,t, εξt

)
= expR̂t − expγRR̂t−1+(1−γR)γΠ exp

γ̂Π,t Π̂t+σξεξt = 0.
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where we have expressed each variable vart in terms of log deviation with respect to the steady

state, v̂art = log vart − log var. The log-linear approximation of f around the steady state is

f
(
R̂t, R̂t−1, Π̂t, γ̂Π,t, εξt

)
' f1 (0) R̂t + f2 (0) R̂t−1 + f3 (0) Π̂t + f4 (0) γ̂Π,t + f5 (0) εξt.

where fi (0) is the first derivative of the function f evaluated at (0, 0, 0, 0, 0) with respect to the

variable i. Note that:

f4

(
R̂t, R̂t−1, Π̂t, γ̂Π,t, εξt

)
= − (1− γR) γΠΠ̂t expγ̂Π,t expγRR̂t−1+(1−γR)γΠ exp

γ̂Π,t Π̂t+σξεξt .

Clearly, f4 (0) = 0 and γ̂Π,t does not play any role in this first-order approximation. This is

the consequence of one variable (Πt) being raised to another variable (γΠ,t). Thus, the log-linear

approximation of the Taylor rule is:

f
(
R̂t, R̂t−1, Π̂t, γ̂Π,t, εmt

)
' R̂t − γRR̂t−1 − (1− γR) γΠΠ̂t + σξεξt (50)

which does not depend on γΠ,t, but only on the steady state γΠ and it is exactly the same

expression as the one without parameter drifting. Hence, in order to capture parameter drifting

in the Taylor rule, we need, at least, to perform a second-order approximation.

5. Construction of Data

When we estimate the model, we make the series provided by the National Income and Product

Accounts (NIPA) consistent with the definition of variables in the theory. The main adjustment

we undertake is to express both real output and real gross investment in consumption units. Our

model implies that there is a numeraire in terms of which all the other prices need to be quoted.

We pick consumption as the numeraire. The NIPA, in comparison, uses an index of all prices

to transform nominal GDP and investment into real values. In the presence of changing relative

prices, such as the ones we have seen in the U.S. over the last several decades with the fall in the

relative price of capital, NIPA’s procedure biases the valuation of different series in real terms.

We map theory into the data by computing our own series of real output and real investment.

To do so, we use the relative price of investment, defined as the ratio of an investment deflator

and a deflator for consumption. The denominator is easily derived from the deflators of non-
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durable goods and services reported in the NIPA. It is more complicated to obtain the numerator

because, historically, NIPA investment deflators were poorly constructed. Instead, we rely on the

investment deflator computed by Fisher (2006). Since the series ends early in 2000.Q4, we have

extended it to 2007.Q1 by following Fisher’s methodology.

For the real output per capita series, we first define nominal output as nominal consumption

plus nominal gross investment. We define nominal consumption as the sum of personal consump-

tion expenditures on non-durable goods and services. We define nominal gross investment as

the sum of personal consumption expenditures on durable goods, private residential investment,

and non-residential fixed investment. Per capita nominal output is equal to the ratio between

our nominal output series and the civilian non-institutional population between 16 and 65. To

obtain per capita values, we divide the previous series by the civilian non-institutional population

between 16 and 65. Finally, real wages are defined as compensation per hour in the non-farm

business sector divided by the CPI deflator.

6. Additional Empirical Results

6.1. Determinacy of Equilibrium

We mentioned in the main text that the estimated value of γΠ (1.045 in levels) guarantees local

determinacy of the equilibrium. To see this, note that, for local determinacy, the relevant part of

the solution of the model is only the linear first-order component. This component depends on γΠ,

the mean policy response, and not on the current value of γΠt. The economic intuition is that local

unicity survives even if γΠt temporarily violates the Taylor principle as long as there is reversion

to the mean in the policy response and, thus, the agents have the expectation that γΠt will satisfy

the Taylor principle on average. For a related result in models with Markov-switching regime

changes, see Davig and Leeper (2006). While we cannot find an analytical expression for the

determinacy region, numerical experiments show that, conditional on the other point estimates,

values of γΠ above 0.98 ensure uniqueness. Since the likelihood assigns zero probability to values

of γΠ lower than 1.01, well inside the determinacy region, multiplicity of local equilibria is not an

issue in our application.
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6.2. Impulse Response Functions

As a check of our estimates, we plot the IRFs generated by the model to a monetary policy shock.

This exercise is an important test. If the IRFs match the shapes and sizes of those gathered

by time series methods such as SVARs, it will strengthen our belief in the rest of our results.

Otherwise, we should at least understand where the differences come from.

Auspiciously, the answer is positive: our model generates dynamic responses that are close to

the ones from SVARs (see, for instance, Sims and Zha, 2006). The left panel of figure 6.1 plots the

IRFs to a monetary shock of three variables commonly discussed in monetary models: the federal

funds rate, output growth, and inflation. Since we have a non-linear model, in all the figures in

this section, we report the generalized IRFs starting from the mean of the ergodic distribution

(Koop, Pesaran, and Potter, 1996). After a one-standard-deviation shock to the federal funds

rate, inflation goes down in a hump-shaped pattern for many quarters and output growth drops.

The right panel of figure 6.1 plots the IRFs after a one-standard-deviation innovation to the

monetary policy shock computed conditional on fixing γΠt to the estimated mean during the tenure

of each of three different chairmen of the Board of Governors: the combination Burns-Miller,

Volcker, and Greenspan. This exercise tells us how the variation in the systematic component

of monetary policy has affected the dynamics of aggregate variables. Furthermore, it allows a

comparison with numerous similar exercises done in the literature with SVARs where the IRFs

are estimated on different subsamples.

The most interesting difference is that the response of output growth under Volcker was the

mildest: the estimated average stance of monetary policy under his tenure reduces the volatility

of output. Inflation responds moderately as well since the agents have the expectation that future

shocks will be smoothed out by the monetary authority. This finding also explains why the

IRFs of the interest rate are nearly on top of each other for all three periods: while we estimate

that monetary policy responded more during Volcker’s years for any given level of inflation than

under Burns-Miller or Greenspan, this policy lowers inflation deviations and hence moderates the

actual movement along the equilibrium path of the economy. Moreover, this second set of IRFs

already points out one important result of this paper: we estimate that monetary policy under

Burns-Miller and Greenspan was similar, while it was different under Volcker. This finding will

be reinforced by the results we present in the main body of the text.
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Figure 6.1: IRFs to a Monetary Policy Shock, Unconditional and Conditional

For completeness, we also plot, in figure 6.2, the IRFs to each of the other four shocks in

our model: the two preference shocks (intertemporal and intratemporal) and the two technology

shocks (investment-specific and neutral). The behavior of the model is standard. A one-standard-

deviation intertemporal preference shock raises output growth and inflation because there is an

increase in the desire for consumption in the current period. The intratemporal shock lowers

output because labor becomes less attractive, driving up the marginal costs and, with it, prices.

The two supply shocks raise output growth and lower inflation by increasing productivity. All of

those IRFs show that the behavior of the model is standard.
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Figure 6.2: IRFs of inflation, output growth, and the federal funds rate to an intertemporal

demand (εdt) shock, an intratemporal demand (εϕt) shock, an investment-specific (εµt) shock,

and a neutral technology (εAt) shock. The responses are measured as log differences with respect

to the mean of the ergodic distribution.

6.3. Model Comparison

Another use of our procedure to evaluate the likelihood function is to compare our model against

alternative models -or alternative versions of the same model. For instance, a natural question

is to compare our benchmark model with stochastic volatility and parameter drifting with a

version without parameter drifting but with stochastic volatility. That is: once we have included

stochastic volatility, is it still important to allow for changes in monetary policy to account for

the time-varying volatility of aggregate data in the U.S.?

Given our Bayesian framework, a natural approach for model comparison is the computation

of log marginal data densities (log MDD) and log Bayes factors. Let us focus on the proposed

example of comparing the full model with stochastic volatility and parameter drifting (drift) with

a version without parameter drifting (no drift) but with stochastic volatility. In this second case,

we have two fewer parameters, ργΠ
and σπ (but we still have γΠ). To ease notation, we partition

the parameter vector γ as γ =
(
γ̃, ργΠ

, σπ
)
, where γ̃ is the vector of all the other parameters,

21



common to the two versions of the model.

Given that our priors are 1) uniform, 2) independent of each other, and 3) cover all the areas

where the likelihood is (numerically) positive, and that 4) the priors on γ̃ are common across the

two specifications of the model, we can write

log p
(
YT= Ydata,T ; drift

)
= log

∫
p
(
YT= Ydata,T ; γ, drift

)
dγ + log p (γ̃) + log p

(
ργΠ

)
+ log p (σπ) ,

where log p (γ̃), log p
(
ργΠ

)
, and log p (σπ) are constants and

log p
(
YT= Ydata,T ;no drift

)
= log

∫
p
(
YT= Ydata,T ; γ̃,no drift

)
dγ̃ + log p (γ̃) .

Thus

logBdrift, no drift = log p
(
YT= Ydata,T ; drift

)
− log p

(
YT= Ydata,T ;no drift

)
= log

∫
p
(
YT= Ydata,T ; γ, drift

)
dγ̃ − log

∫
p
(
YT= Ydata,T ; γ̃,no drift

)
dγ̃

− log p
(
ργΠ

)
− log p (σπ) .

The difference

log

∫
p
(
YT= Ydata,T ; γ, drift

)
dγ − log

∫
p
(
YT= Ydata,T ; γ̃,no drift

)
dγ̃

tells us how much better the version with parameter drift fits the data in comparison with the

version with no drift. The last two terms, log p
(
ργΠ

)
+ log p (σπ) , penalize for the presence of two

extra parameters.

We estimate the log MDDs following Geweke’s (1998) harmonic mean method. This requires

us to generate a new draw of the posterior of the model for the specification with no parameter

drift to compute log
∫
p
(
YT= Ydata,T ; γ̃,no drift

)
dγ̃. After doing so, we find that

logBdrift, no drift = 126.1331 + log p
(
ργΠ

)
+ log p (σπ)

This expression shows a potential problem of Bayes factors: by picking uniform priors for

ργΠ
and σπ spread out over a suffi ciently large interval, we could overcome any difference in
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fit. But the prior for ργΠ
is pinned down by our desire to keep that process stationary, which

imposes natural bounds in [−1, 1] and makes log p
(
ργΠ

)
= −0.6931. Thus, there is only one

degree of freedom left: our choice of log p (σπ). Any sensible prior for σπ will only put mass

in a relatively small interval: the point estimate is 0.1479, the standard deviation is 0.002, and

the likelihood is numerically zero for values bigger than 0.2. Hence, we can safely impose that

log p (σπ) > −1 (log p (σπ) = −1 would imply a uniform prior between 0 and 2.7183, a considerably

wider support than any evidence in the data), and conclude that logBdrift, no drift > 124.4400. This

is conventionally considered overwhelming evidence in favor of the model with parameter drift

(Jeffreys, 1961, for instance, suggests that differences bigger than 5 are decisive). Thus, even after

controlling for stochastic volatility, the data strongly prefer a specification where monetary policy

has changed over time. This finding, however, does not imply that volatility shocks did not play

an important role in the time-varying volatilities of U.S. aggregate time series. In fact, as we will

see in the next section of this appendix, they were a key mechanism in accounting for it.

A formal comparison with the case without stochastic volatility is more diffi cult, since we are

taking advantage of its presence to evaluate the likelihood. Fortunately, Justiniano and Primiceri

(2008) and Fernández-Villaverde and Rubio-Ramírez (2007) estimate models similar to ours with

and without stochastic volatility (in the first case, using only a first-order approximation to the

decision rules of the agents and in the second with measurement errors). Both papers find that the

fit of the model improves substantially when we include stochastic volatility. Finally, Fernández-

Villaverde and Rubio-Ramírez (2008) compare a model with parameter drifting and no stochastic

volatility with a model without parameter drifting and no stochastic volatility and report that

parameter drifting is also strongly preferred by the likelihood.

It has been noted that the estimation of log MDDs is dangerous because of numerical insta-

bilities in the evaluation of the integral log marginal data density (log MDD). This concern is

particularly relevant in our case, since we have a large model saddled with burdensome computa-

tion. Thus, as a robustness analysis, we also computed the Bayesian Information Criterion (BIC)

(Schwarz, 1978). The BIC, which avoids the need to handle the integral in the log MDD, can be

understood as an asymptotic approximation of the Bayes factor that also automatically penalizes

for extra parameters. The BIC of model i is defined:

BICi = −2 ln p
(
YT= Ydata,T ; γ̂, i

)
+ ki lnn
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where γ̂ is the maximum likelihood estimator (or, given our flat priors, the mode of the posterior),

ki is the number of parameters, and n is the number of observations. Then, the BIC of the model

with stochastic volatility and parameter drifting is BICdrift = −2∗3885+28∗ln 192 = −7, 622.8. If

we eliminate parameter drifting and the parameters ργΠ
and σπ associated with it (and, of course,

with a new point estimate of the other parameters) BICno drift = −2 ∗ 3810.7 + 26 ∗ ln 192 =

−7, 484.7. The difference is, therefore, over 138 log points, which is again overwhelming evidence

in favor of the model with parameter drifting.

6.4. Historical Counterfactuals

One important additional exercise is to quantify how much of the observed changes in the volatil-

ity of aggregate U.S. variables can be accounted for by changes in the standard deviations of

shocks and how much by changes in policy. To accomplish this, we build a number of historical

counterfactuals. In these exercises, we remove one source of variation at a time and we measure

how aggregate variables would have behaved when hit only by the remaining shocks. Since our

model is structural in the sense of Hurwicz (1962) (it is invariant to interventions, including shocks

by nature such as the ones we are postulating), we will obtain an answer that is robust to the

Lucas critique.

In the next two subsections, we will always plot the same three basic variables that we used in

section 5 of the main text: inflation, output growth, and the federal funds rate. Counterfactual

histories of other variables could be built analogously. Also, we will have vertical bars for the

tenure of each chairman, following the same color scheme as in section 5.

6.4.1. Counterfactual I: Switching Chairmen

In our first counterfactual, we move one chairman from his mandate to an alternative time period.

For example, we appoint Greenspan as chairman during the Burns-Miller years. By that, we mean

that the Fed would have followed the policy rule dictated by the average γΠt estimated during

Greenspan’s time while starting from the same states as Burns-Miller and suffering the same

shocks (both structural and of volatility). We repeat this exercise with all the other possible

combinations: Volcker in the Burns-Miller decade, Burns-Miller in Volcker’s mandate, Greenspan

in Volcker’s time, Burns-Miller in the Greenspan years, and, finally, Volcker in Greenspan’s time.

It is important to be careful in interpreting this exercise. By appointing Greenspan at Volcker’s
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time, we do not literally mean Greenspan as a person, but Greenspan as a convenient label for a

particular monetary policy response to shocks that according to our model were observed during

his tenure. The real Greenspan could have behaved in a different way, for example, as a result of

some non-linearities in monetary policy that are not properly captured by a simple rule such as the

one postulated in section 3. The argument could be pushed one step further and we could think

about the appointment of Volcker as an endogenous response of the political-economic equilibrium

to high inflation. In our model agents have a probability distribution regarding possible changes in

monetary policy in the next periods, but those changes are uncorrelated with current conditions.

Therefore, our model cannot capture the endogeneity of policy selection.

Another issue that we sidelined is the evolution of expectations. In our model, agents have

rational expectations and observe the changes in monetary policy parameters. This hypothesis

may be a poor approximation of the agents’behavior in real life. It could be the case that γΠt was

high in 1984, even though inflation was already low by that time, because of the high inflationary

expectations that economic agents held during most of the 1980s (this point is also linked to issues

of commitment and credibility that our model does not address). While we see all these arguments

as interesting lines of research, we find it important to focus first on our basic counterfactual.

Moments In table 6.1, we report the mean and the standard deviation of inflation, output

growth, and the federal funds rate in the observed data and in the sets of counterfactual data.

Inflation was high with Burns-Miller, fell with Volcker, and stayed low with Greenspan. Output

growth went down during the Volcker years to recover with Greenspan. The federal funds rate

reached its peak with Volcker. The standard deviation of output growth fell from 4.7 in Burns-

Miller’s time to 2.45 with Greenspan, a cut in half. Similarly, inflation volatility fell nearly 54

percent and the federal funds rate volatility 5 percent.

But table 6.1 also tells us one important result: time-varying monetary policy significantly

affected average inflation. In particular, Volcker’s response to inflation was strong and switching

him to either Burns-Miller’s or Greenspan’s time would have reduced average inflation dramati-

cally. But it also tells us other things: contrary to the conventional wisdom, our estimates suggest

that the stance of monetary policy against inflation under Greenspan was not strong. In Burns-

Miller’s time, the monetary policy under Greenspan would have delivered slightly higher average

inflation, 6.83 versus the observed 6.23, accompanied by a lower federal funds rate and lower out-
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put growth, 1.89 versus the observed 2.03. The difference is even bigger in Volcker’s time, during

which average inflation would have been nearly 1.4 percent higher, while output growth would

have been virtually identical (1.34 versus 1.38). The key for this finding is in the behavior of the

federal funds rate, which would have increased only by 9 basis points, on average, if Greenspan

had been in charge of the Fed instead of Volcker. Given the higher inflation in the counterfactual,

the higher nominal interest rates would have meant much lower real rates. The counterfactual

of Burns-Miller in Greenspan’s and Volcker’s time casts doubt on the malignant reputations of

these two short-lived chairmen, at least when compared with Greenspan. Burns-Miller would have

brought even slightly lower inflation than Greenspan, thanks to a higher real federal funds rate

and a bit higher output growth. However, Burns-Miller would have delivered higher inflation than

Volcker.

Table 6.1: Switching Chairmen, Data versus Counterfactual Histories

Means Standard Deviations

Inflation Output Gr. FFR Inflation Output Gr. FFR

BM (data) 6.2333 2.0322 6.5764 2.7347 4.7010 2.2720

Greenspan to BM 6.8269 1.8881 6.5046 3.3732 4.6781 2.0103

Volcker to BM 4.3604 1.5010 7.6479 2.4620 4.6219 2.3470

Volcker (data) 5.3584 1.3846 10.3338 3.1811 4.4811 3.4995

BM to Volcker 6.4132 1.3560 10.4126 2.9728 4.4220 3.0648

Greenspan to Volcker 6.7284 1.3423 10.4235 2.9824 4.3730 2.8734

Greenspan (data) 2.9583 1.5177 4.7352 1.2675 2.4567 2.1887

BM to Greenspan 2.3355 1.5277 4.4529 1.5625 2.4684 2.4652

Volcker to Greenspan -0.4947 1.3751 3.6560 1.7700 2.4705 2.7619

This is an important empirical finding: according to our model, time-varying monetary pol-

icy significantly affected average inflation. While Volcker’s response to inflation was strong,

Greenspan’s response was milder and he seems to have behaved quite similarly to how Burns-

Miller would have behaved.

Counterfactual Paths An alternative way to analyze our results is to plot the whole coun-

terfactual histories summarized in table 6.1. We find it interesting to plot the whole history

because changes in the economy’s behavior in one period will propagate over time and we want
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to understand, for example, how Greenspan’s legacy would have molded Volcker’s tenure. Also,

plotting the whole history allows us to track the counterfactual response of monetary policy to

large economic events such as the oil shocks.

In figure 6.3, we move to Burns-Miller being reappointed in Greenspan’s time. This plot

suggests that the differences in monetary policy under Greenspan and Burns-Miller may have

been overstated by the literature.
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Figure 6.3: Burns-Miller during the Greenspan years

In figure 6.4, we plot the counterfactual of Burns-Miller extending their tenure to 1987. The

results are very similar to the case in which we move Greenspan to the same period: slower

disinflation and no improvement in output growth.
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Figure 6.4: Burns-Miller during the Volcker years

A particularly interesting exercise is to check what would have happened if Reagan had decided

to reappoint Volcker and not appoint Greenspan. We plot these results in figure 6.5. The quick

answer is: lower inflation and interest rates. Our estimates also suggest that Volcker would have

reduced price increases with little cost to output.
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Figure 6.5: Volcker during the Greenspan years
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Our final exercise is to plot, in figure 6.6, the counterfactual in which we move Volcker to the

time of Burns-Miller. The main finding is that inflation would have been rather lower, especially

because the effects of the second oil shock would have been much more muted. This counterfactual

is plausible: other countries, such as Germany, Switzerland, and Japan, that undertook a more

aggressive monetary policy during the late 1970s were able to keep inflation under control at levels

below 5 percent at an annual rate, while the U.S. had peaks of price increases over 10 percent.
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Figure 6.6: Volcker during the Burns-Miller years

6.4.2. Counterfactual II: No Volatility Changes

In our second historical counterfactual, we compute how the economy would have performed in

the absence of changes in the volatility of the shocks, that is, if the volatility of the innovation of

the structural shocks had been fixed at its historical mean. To do so, we back out the smoothed

structural shocks as we did in section 5.8 and we feed them to the model, given our parameter

point estimates and the historical mean of volatility, to generate series for inflation, output, and

the federal funds rate.

Moments Table 6.2 reports the moments of the data (in annualized terms) and the moments

from the counterfactual history (no s.v. in the table stands for “no stochastic volatility”). In both

cases, we include the moments for the whole sample and for the sample divided before and after
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1984.Q1, a conventional date for the start of the great moderation (McConnell and Pérez-Quirós,

2000). In the last two rows of the table, we compute the ratio of the moments after 1984.Q1 over

the moments before 1984.Q1. The benchmark model with stochastic volatility plus parameter

drifting replicates the data exactly.

Some of the numbers in table 6.2 are well known. For instance, after 1984, the standard

deviation of inflation falls by nearly 60 percent, the standard deviation of output growth falls by

44 percent, and the standard deviation of the federal funds rate falls by 39 percent. In terms of

means, after 1984, there is less inflation and the federal funds rate is lower, but output growth is

also 15 percent lower.

Table 6.2: No Volatility Changes, Data versus Counterfactual History

Means Standard Deviations

Inflation
Output

Growth
FFR Inflation

Output

Growth
FFR

Data 3.8170 1.8475 6.0021 2.6181 3.5879 3.3004

Data, pre 1984.1 4.6180 1.9943 6.7179 3.2260 4.3995 3.8665

Data, after 1984.1 2.9644 1.6911 5.2401 1.3113 2.4616 2.3560

No s.v. 2.5995 0.7169 6.9388 3.5534 3.1735 2.4128

No s.v., pre-1984.1 2.0515 0.9539 6.3076 3.7365 3.4120 2.7538

No s.v., after-1984.1 3.1828 0.4647 7.6106 3.2672 2.8954 1.7673

Data, post-1984.1/pre-1984.1 0.6419 0.8480 0.7800 0.4065 0.5595 0.6093

No s.v., post-1984.1/pre-1984.1 1.5515 0.4871 1.2066 0.8744 0.8486 0.6418

The table also reflects the fact that without volatility shocks, the reduction in volatility ob-

served after 1984 would have been noticeably smaller. The standard deviation of inflation would

have fallen by only 13 percent, the standard deviation of output growth would have fallen by 16

percent, and the standard deviation of the federal funds rate would have fallen by 35 percent, that

is, only 33, 20, and 87 percent, respectively, of how much they would have fallen otherwise. We

must resist here the temptation to undertake a standard variance decomposition exercise. Since

we have a second-order approximation to the policy function and its associated cross-product

terms, we cannot neatly divide total variance among the different shocks as we could do in the

linear case.
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Table 6.2 documents that, while time-varying policy is reflected in changes of average infla-

tion, volatility shocks affect the standard deviation of the observed series. Without time-varying

volatility the decrease in observed volatility would not have been nearly as big as we observed

in the data. Hence, while changes in the systematic component of monetary policy account for

changes in average inflation, volatility shocks account for changes in the standard deviation of

inflation, output growth and interest rates observed after 1984. Also, without stochastic volatility,

output growth would have been quite lower on average.

Counterfactual Paths Figure 6.7 compares the whole path of the counterfactual history (blue

line) with the observed one (red line). Figure 6.7 tells us that volatility shocks mattered throughout

the sample. The run-up in inflation would have been much slower in the late 1960s (inflation would

have actually been negative during the last years of Martin’s tenure) with small effects on output

growth or the federal funds rate (except at the very end of the sample). Inflation would not

have picked up nearly as much during the first oil shock, but output growth would have suffered.

During Volcker’s time, inflation would also have fallen faster with little cost to output growth.

These are indications that both Burns-Miller and Volcker suffered from large and volatile shocks

to the economy. In comparison, during the 1990s, inflation would have been more volatile, with a

big increase in the middle of the decade. Similarly, during those years, output growth would have

been much lower, with a long recession between 1994 and 1998, and the federal funds rate would

have been prominently higher. Confirming the results presented in the paper, this is another

manifestation of how placid the 1990s were for policy makers.
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Figure 6.7: Counterfactual “No Changes in Volatility”.
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