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Abstract 

We examine whether Google query trends helps economic agents with predictions about the checking in and 

overnight stays of travelers in Spain in real time. Using a dynamic factor approach and a real-time database 

of vintages that reproduces the exact information that was available to a forecaster at each particular point in 

time, we show that the models including query trends outperform models that exclude these leading 

indicators. In this way, we aim to contribute to the literature on the link between the Internet and the tourism 

market. 
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1 Introduction

The Spanish economy is extremely dependent on tourism and is one of the world’s top tourism

destinations. In 2015, according to the World Tourism Organization, by international tourism

receipts, Spain was in third position, with 56.5 billion US dollars, only behind the United States

and China. By volume of international arrivals, Spain also ranked third, with 68.2 million

tourists, after France and the United States. In 2014, as reported in the latest publication from

the Spanish Tourism Satellite Account, the volume of tourist activity reached the amount of

10.9% of GDP.1

In accordance with these magnitudes, having accurate previsions about the dynamism of cur-

rent and upcoming tourism is of primary importance for policy authorities in assessing overall

economic developments. In addition, having timely information about the evolution of tourism

is also crucial in the previsions of the hospitality and tourist industry, which need to find and de-

velop new means to distribute travel and hospitality products and services, to manage marketing

information for consumers, and to provide comfort and convenience to travelers. Unfortunately,

in spite of these real-time monitoring requirements, data on the checking in and overnight stays of

travelers, the two major measures of tourism in Spain, are published monthly with a one-month

lag.

In this paper, we follow the idea that the increasingly widespread use of the Internet by

travelers has led to the creation of a potentially useful data source of leading tourism indicators

that could help both policy authorities and the tourist industry to perform early assessments of

ongoing tourism developments. In this context, the tourist industry has been among the first to

capitalize on new technology, and the number of travelers that use the Internet to plan and book

their business and pleasure trips has significantly grown during the last decade. In line with

those developments, recent literature has focused on exploiting the valuable information search

query data provided about tourists’ behavior. Google’s dominance in the field of search engines

makes this web search engine a reliable representative from which to examine the forecasting

contents of search results.2

Recently, several studies explored the benefits of using internet search engines to document

current social trends and to predict future economic patterns. Examples are Choi and Varian

1In 2015, this figure rose up to 11.7% according to the Spanish group Exeltur (Alliance for Tourism Excellence).
2According to StatCounter, Google has roughly 90 percent of the global search market in 2016, though precise

share varies by country.
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(2012), who illustrate the use of Google Trends information for making predictions about US

retail sales, automotive sales, home sales and trends in travel destinations. Chamberlin (2010)

finds that search terms are well correlated with disaggregated UK retail sales. McLaren (2011)

shows that internet searches contain leading information for the UK housing and labor market.

Vosen and Smith (2011), find that Google data contain better predictive power than that of

conventional survey-based indicators of US private consumption.3

The ability of search query data to improve the forecasting of tourism demand has also been

examined in recent years. While not claiming to be exhaustive, Pan et al. (2012) showed that

including information about aggregated search volumes improved the weekly forecast accuracy

of demand for hotel rooms in South California. Jackman and Naitram (2015) found that air

passenger arriving in Barbados from Canada and UK could be better predicted one week ahead,

by including a Google Trends series with queries performed from those two countries. Li et

al (2017), used a generalized dynamic factor model to extract a weekly “search index” based

on Google Trend data to obtain out-of-sample improvements in forecast accuracy of tourist

arrivals in Beijing. Yang et al. (2015) examined the predicted power of the queries entered into

search engines on the number of visitors in Hainan (China). Bangwayo-Skeete and Skeete (2015)

used query trends from Canada, the US and UK to forecast values 12 months prior to monthly

tourist arrivals in five Caribbean countries. Rivera (2016) found that including information

about query trends from the US helps to improve forecasting accuracy on a 12-month horizon,

but not for short-term forecasts. In a very specific application for the Spanish economy, Artola

and Galan (2012) used searches made from the United Kingdom for the term “Spain holiday”

to show some short-term improvements in forecasting British tourist inflows to Spain, although

the gains depended crucially on which ARIMA model was taken as a benchmark.

We contribute to this literature in several ways. In collaboration with Google, we develop

a novel web-based data set that collects information from several query trends. These provide

reports on the real-time evolution of the query trends related to various tourist industries in the

online travel market and on the use of the Internet and e-commerce for travel. We consider that

these indices constitute a reasonable source of potential indicators of what travelers are doing

and what they are planning to do. This is because; largely they cover the use of the Internet as a

research platform and a tourism data source. This data set of query trends is available at country

3For good overviews and some extensions of the related literature, the reader is referred to recent surveys by

Askitas and Zimmermann (2015) and Lenaerts et al. (2016).
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level for Austria, Germany, France, Ireland, Italy, Switzerland, the United States and United

Kingdom, which accounted for almost two-thirds of the total non-resident overnights stays in

Spanish hotels during 2015. In addition, the query trends are related to travel facilities (air,

ferries, bus and rail), accommodation (hotel, holiday rental and camping), vacation packages,

and general matters about travel and destination (city and short trips, activities, weather, rent

a car).

The advantage of using query trends to forecast tourist data in real-time is two-fold. First,

query trends can use updated information up to the day before the forecast computation, which

could potentially be highly valuable in this context due to the lags in the publication of the official

statistics. For example, in the middle of a given month t, while the latest available monthly

figure for the checking in and overnight stays of travelers refers to month t− 2, Google data are

available for month t− 1 and an advanced view of the searches in month t. Second, lags in the

query trends can also be useful in the forecast process since some tourists start planning their

stays some time before they travel. This involves, among many other things, booking an airline

ticket, hotel room, rental car or package tour online, to locating and compiling information on

the places to visit or to stay.

The application designed in this paper requires real-time processing of high-volume data

streams, which pushes the limits of traditional data processing time series models. To deal with

a total of 65 series of query trends from 8 different countries in real time, we rely on Dynamic

Factor Models (Stock and Watson, 2011). Within this framework, the goal is to explain the

maximum amount of variance in the query trends with the fewest number of common factors.

Therefore, we allow all the information contained in the series to be potentially valuable in

order to extract the relevant signals on the query trends dynamics in a small number of common

components. Then, we examine the usefulness of this information to improve the accuracy of

short-term forecasts of the checking in and overnight stays of travelers in real time.

Our results suggest that the model using query trends yields significant forecasting improve-

ments over benchmark predictions computed from standard autoregressive specifications. To

show the advantages of our proposal, we develop a pseudo real-time forecasting exercise, which

is carried out over from 2014.09 until 2016.01, in a recursive way. With every new vintage of

data, the model is re-estimated and the forecasts for different horizons are computed. The vin-

tages are constructed by taking into account the lag of synchronicity in data publication that

characterizes the real-time data, by mimicking the pattern of the actual chronological order of
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the data releases. In each forecasting day in month t, the model predicts the tourism data in

month t − 1 (backcast), in month t (nowcast) and in month t + 1 (forecast). Although the

gains depend on the forecasting horizon, we find forecasting improvements from using the query

trends to forecast tourist indicators in real time.

The structure of this paper is as follows. Section 2 outlines the dynamic factor model, which

relates the tourism indicators to be forecast to the set of Google search volume trends. Section 3

analyzes the estimated factors and examines the empirical performance of Google query trends

in forecasting tourism indicators in Spain. Section 4 concludes and proposes several future lines

of research.

2 Dynamic factor models

Models that manage large sets of indicators typically suffer a trade-off between the data reduction

requirements and the cost of discarding relevant information. Factor models are traditional

dimensionality reduction techniques that try to mitigate these problem by summarizing the

whole cross-section dynamic in a few common factors (Geweke, 1977; Sargent, 1977). Then, the

estimated factors can be used to provide efficient forecasts of a target variable in a simple linear

regression. Significant examples can be found in Stock and Watson (2002a, 2002b), Bai (2003)

and Forni et al. (2005).

The forecast problem can be described using two basic equations. Let yt be either the check-

ing in or overnight stays of travelers, the target series to forecast. Let Xt be an N -dimensional

vector of query trends.4 Assume that the query trends admit a factor model representation, i.e.,

the evolution of the time series can be decomposed as the sum of r common unobserved factors,

Ft, and their respective idiosyncratic dynamics, et,

Xt = ΛFt + et, (1)

where Λ is an N × r matrix of the factor loadings, and et is an N × 1 vector of independent

idiosyncratic disturbances. Provided that Ft+h is available, the h-horizon forecast equation is

described by the forecasting equation

yt+h = µ+ β(L)Ft+h + α(L)yt+h−1 + γHWt+h + εt+h, (2)

4As usual, t = 1, ..., T, is the number of time series observations.
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where µ is a constant, β(L) is a vector lag polynomial, α(L) is a scalar lag polynomial and εt+h

the forecast error.5 The term HW is a dummy variable that takes on the value one if month t

refers to the Holy Week.6 Once the model is estimated, the forecast is then performed as

ŷT+h = µ̂+ β̂(L)F̂T−1+h + α̂(L)ŷT+h−1 + γ̂HWT+h, (3)

where the µ̂, β̂(L), α̂(L), γ̂, F̂T+h−1, and ŷT+h−1 are the estimated coefficients, the estimated

factors and the estimated dependent variable up to T + h− 1.

In order to estimate the unobserved common factors, we follow the lines suggested by the

influential contribution by Stock and Watson (2002a). Skipping details, the methodology is based

on estimating the dynamic factors through principal components. Following their notation, it

is possible to write the nonlinear least square function,

V
(
F̃ , Λ̃

)
= (NT )−1

(
X − Λ̃F̃

)′ (
X − Λ̃F̃

)
, (4)

as a function of hypothetical values for factors, F̃ = (F̃1 . . . F̃T ), and factor loadings, Λ̃. When

N > T , minimizing (4) is equivalent to maximize tr
[
F̃ ′(XX ′)F̃

]
subject to F̃ ′F̃ /N = Ir where

tr(·) denotes the trace of the matrix. This problem is solved by writing down the principal

component estimator F̂ as the matrix that contains the eigenvectors associated with the r

largest eigenvalues of XX ′.

3 Empirical Results

3.1 Data description

Due to the widespread popularity of the Internet, a growing number of travelers use web search

engines to planning their trips and stays. The anonymised searches made with Google have been

used to construct weekly indices that collect the relevant information on the trips and stays that

travelers take and intend to take. The query trends used to obtain all the results of this paper

come from weekly reports on indexed trends of different search term baskets related to various

tourism industries that cover the period from the first week of July 2007 to the second week

of January 2016. Classified by country of origin, they show how often several traveling related

topics have been searched for on Google over time. The countries where the query trends were

collected from are Austria, Germany, France, Ireland, Italy, Switzerland, the United States and

5For notation simplicity, the dependence of the parameters on h is suppressed
6The dummy variable attempts to remove remaining seasonal effects that occur on Holy Weeks.
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United Kingdom, which accounted for 62% of the total non-resident overnight stays in Spanish

hotels during 2015.

The query trends indeces rely on searches on travel facilities (air, ferries, bus and rail),

accommodation (hotel, holiday rental and camping), vacation packages, general travel and des-

tination (city and short trips, activities, weather, rent a car). All query trends indices start with

the total query volume related to each specific term in a specific country, divided by the total

number of queries in that country at a point in time. The resulting figures are then normalized

so that they start at 100 in the first week of July 2007. Finally, to be compared with the checking

in and overnight stays of travelers, which are published on a monthly basis, we compute the

monthly averages of the weekly indeces.

To examine the dynamics of travel related Google trends, Figure 1 shows a weighted average

of all query indices, which although not used in the empirical analysis, is obtained for reasons

of presentation. In addition, the figure also plots two official tourism statistics, the checking in

and overnight stays of non-resident travelers in hotels. Regarding tourist indicators, the INE

(National Statistics Institute) states that checked-in travelers include all people who stay one or

more consecutive nights in the same collective tourist accommodation. Overnight stays include

every night that a traveler spent in these establishments. In the paper, we focus on the versions

of tourist indicators that only account for non-residents.7

The figure shows a high correlation between short-term movements in the tourist indicators

and the weighted query index, in both cases showing the same strong seasonal pattern. Moreover,

the averaged query index appears to start growing a few months before the beginning of each

summer season, which could be related to people planning ahead for their holidays.

[Figure 1 about here]

To remove seasonal patterns, we use year-on-year growth rates instead of monthly growth

rates of seasonally adjusted data.8 Therefore, to be compared with the annual growth rate

transformation employed in the case of the query indices, we also use year-on-year growth rates

for the tourist indicators in the model. According to Figure 2, the evolution of tourist indicators

in Spain showed a phase of deep decline during the Great Recession followed by a period of

7In the empirical application, we examine the potential improvements of the query trends to forecast tourism

indicators by type of accommodation: hotels, rental apartments and the sum of the two, plus camping.
8It is hardly possible to compute accurate seasonal factors by employing standard techniques of seasonal

adjustment since query trends are available only since 2007.
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steady growth thereafter. In light of the severity of the 2008 downturn and the rapid recovery

in 2009 suffered in the tourism sector, the relevant question is whether query trends can help to

anticipate the current and short-term evolution of tourist developments, to allow policy makers

and the tourist industry to adopt preemptive measures.

[Figure 2 about here]

Figure 2 also reveals that query trends and tourist indicators cohere strongly across time

during the sample period. In fact, the in-sample correlation between total travel related Google

query trends and non-resident overnight stays or the checking into hotels of travelers are up

to 0.61 and 0.58, respectively. A good example of this closed relationship among query trends

and tourist indicators can be depicted in Figure 3, which shows how the annual growth rate

of each of the travel related query trends from Italy correlates with the annual growth rate of

Italian overnight-stays in Spanish hotels. In particular, we show a two-year rolling window of

that correlation for each of the query trends specified. According to the figure, the correlations

are close to one in most of the cases and along the complete period (vintages from 2010.07 to

2015.12).

[Figure 3 about here]

3.2 In-sample analysis

A total of 65 series of year-on-year growth rates of query trends are used to estimate the common

factor model by principal components. The first three estimated factors are plotted in Figure 4.

[Figure 4 about here]

In order to give an interpretation of the estimated unobserved components, we follow Stock

and Watson (2002a) and we compute the R2 of the regression of the 65 query trends series against

each of the first three factors estimated over the full sample period. These R2 are plotted in

Figures 5 and 6 as bar charts with one chart for each factor. In Figure 5, the query trends are

grouped by category, starting from those which have a larger R2 with respect to the first factor.

[Figure 5 about here]
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The figure shows that the first factor loads primarily on “Pure Destination”, where the R2 is

above 0.3 in seven out of eight cases. For the second factor, the query trends are mainly related

to “Hotels” and “Bus and Rail”, while “Pure destination” continues to be relevant.9 Regarding

the third factor, query trends related to “Hotels”, “Air” and “Activities at destination” are the

most significant, although the R2 is bigger than 0.1 in only 6 out of 65 query trends.

In Figure 6, the query trends are grouped by countries to examine the importance of the

country searches on the formation of factors. The figure shows high correlations between the

first factor and the country searches, which implies that the first factor is representative for all

countries. However, searches from Italy and the United States seem to play a prominent role in

the formation of the second factor while the first third rests on the United Kingdom, Germany

and Ireland.

[Figure 6 about here]

3.3 Simulated real-time analysis

The results obtained in the in-sample analysis are in practice only of limited usefulness. In

monitoring the tourist sector, the analysis is developed in real time, where data are subject to

differences in publication lags, which we need to take account of when computing the forecasts.

Accordingly, we propose a forecast evaluation exercise that is designed to replicate the typical

situation where the model manages real-time data flow. For this purpose, we construct a se-

quence of data vintages from the final vintage data set that tries to mimic the actual real-time

vintages, in the sense that the delays in publication are incorporated.

Without losing generality, we assume that the forecasts are computed on the 15th of each

month t. According with the publication lags, in month t the data set used in the forecasts is

updated with the tourist indicator up to month t − 2. However, query indexes are available to

compute monthly averages up to month t− 1 and the average of the first two weeks of month t.

Figure 7 shows that the latter are accurate proxies of the monthly query averages of month t.

[Figure 7 about here]

In each month t, using the generated sequence of data vintages the models compute inferences

of the tourist indicators in month t − 1 (backcast), in month t (nowcast) and in month t + 1

9“Bus and Rail” is only available for Italy.
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(forecast) in a recursive way. Starting with the backcasts, the model

yt−2 = µ+ α1yt−3 + α2yt−4 +

r∑
i=1

m∑
j=0

βjiF
i
t−j−2 + γHWt−2 + εt−2, (5)

where r refers to the number of factors and m to the number of factor lags, is estimated using

data up to t− 2. Then, the backcasts of t− 1 are computed as

ŷt−1 = µ̂+ α̂1yt−2 + α̂2yt−3 +
r∑

i=1

m∑
j=0

β̂jiF
i
t−j−1 + γ̂HWt−1. (6)

To compute the nowcast, the model

yt−1 = µ+ α1yt−2 + α2yt−3 +
r∑

i=1

m∑
j=0

βjiF
i
t−j−1 + γHWt−1 + εt−1 (7)

is estimated with data up to t− 1.10 Then, the nowcast is computed as

ŷt = µ̂+ α̂1ŷt−1 + α̂2yt−2 +
r∑

i=1

m∑
j=0

β̂jiF
i
t−j + γ̂HWt, (8)

where we use the backcast ŷt−1.

Finally, the forecasting equation is re-estimated to compute forecasts

yt−2 = µ+ α1yt−3 + α2yt−4 +

r∑
i=1

m∑
j=0

βjiF
i
t−j−3 + γHWt−2 + εt−2, (9)

with the extended data set up to t.11 The forecast of t+ 1 is

ŷt+1 = µ̂+ α̂1ŷt + α̂2ŷt−1 +

r∑
i=1

m∑
j=0

β̂jiF
i
t−j + γ̂HWt+1, (10)

where ŷt−1 is the backcast and ŷt is the nowcast.

The first data vintage of this experiment refers to data as it would be known on October

15, 2014. According to the three-month blocks of forecasts computed from the model, the

models produce forecasts of the tourist indicators in September 2014 (backcast), October 2014

(nowcast), and November 2014 (forecast).12 Following this updating scheme, the data set is

updated each month up to January 15, 2016, leading to 15 different vintages.

We are now in a condition to assess the extent to which the searches in Google data help

tourism prediction. For this purpose, we compute the Root Mean Squared Error (RMSE), which

10Notice that the model uses the backcast ŷt−1 for time t− 1.
11Notice that the model uses the backcast ŷt−1 for time t− 1 and the nowcast ŷt for time t.
12At month t, the nowcast at t and forecast at t + 1 can only use query trends of the first two weeks of this

month.
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is the average of the deviations of the predictions from the latest releases of the tourist indicators

available in the data set. In addition to the model that incorporates the information coming

from Google query trends, a univariate autoregressive model, which is also estimated in pseudo

real-time producing iterative forecasts is included as a benchmark model.13

To facilitate comparisons, Table 1 reports the RMSEs relative to the univariate autoregressive

model. Hence, an entry of less than one indicates that the factor model forecast is superior to

the autoregressive univariate forecast. The immediate conclusion obtained when comparing the

forecasts results displayed in the table is that it is beneficial to use the query trends information

in forecasting the Spanish tourism. However, the relative gains from the model that uses the

query trends depends on the number of factors and lags for the factors included in the model.

Regarding the backast and nowcast ability of the model, major gains are obtained when two

factors and three lags for those factors are included in equation (3), both in the case of predicting

overnight-stays and checked-in traveler variables. In the former, the RMSEs fall, in general, by

at least 7% (in the case of rental apartments major gains are found when three factors and one

lag for those factors are included). Regarding checked-in travelers the gains are relatively lower,

being in general between 6% and 10%. When the focus is on forecasts, the higher gains are

found when a model with 3 factors and 0 lag for the factors is used. In that case, the relative

RMSEs are, depending on the target variable, between 13% and 24% lower than in the case of

an AR(2).

[Table 1 about here]

This result confirms the leading forecasting ability of tourism indicators by query trends,

which is clearly achieved when the early available search data is accounted for by the model.

The promptly published information of query trends is relatively much richer and more valuable

in forecasting than in the backcasting and nowcasting exercises.

As a final remark, we point out that this model can be used to compute backcasts, nowcasts

and forecasts on any day of the month, which implies using information on query trends updated

until the day before the forecast computation. As an example of how the model produces

inferences Figure 8 shows the backcast, nowcast and forecast of overnight-stays in hotel that

were obtained on February 15, 2016, along with the prediction errors. It should be noticed that

13This benchmark model includes the Holy Week dummy aiming to distinguish the differences emerging when

Google query trends’ information is incorporated in the model.
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the remarkable increase expected for March, is associated with a base effect related to Easter.14

[Figure 8 about here]

4 Conclusions

The Internet has radically changed the manner in which tourists and travelers obtain travel-

related information. The evidence presented in this paper, based on the performance of tourism

query trends provided by Google over a real-time exercise, has provided very promising support

for using search information to predict checked-in and overnight stays of travelers in Spain. As

in any big data setup, the first step is to capture the big amount of information provided by

the query trends. For this purpose, we assume that the query trends admit a factor model

decomposition, in which each query trends series is the sum of a small set of common factors

and an idiosyncratic component. Then, common factors are used to forecast checked- in and

overnight stay travelers.

The main conclusion that follows from the paper is that using query trends can be useful as

the basis for computing timely short-term forecasts of tourism developments in Spain. From the

vantage point of an early warning system, the results are encouraging in that the signals from

search data occur sufficiently early to allow for preemptive actions. Therefore, the analysis can

be viewed in the line of some recent studies that explored the benefits of using an internet search

engine and social media activity to document current social trends and predict future economic

patterns.

Despite these promising results, it is important to recognize that the conclusions regarding

the performance of query trends examined in this paper are necessarily tentative, mainly because

of the limited number of observations that are available for the query trends indexes. As more

data become available, future work on the help of query trends in the forecasting of tourism in-

dicators could include using additional tourism indicators, extracting seasonal components from

the time series with seasonal adjustment techniques, and using nonlinear forecasting methods.

14In 2015, Easter occurred entirely during April, while in 2016 it took place in March.
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Table 1: Predictive accuracy: Enlarged AR (values relative to an AR model)

Non-residents overnight-stays

Total Hotels Rental Apartments

k m t− 1 t t + 1 t− 1 t t + 1 t− 1 t t + 1

AR(2) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1

0 1.00 .95 .98 .99 .97 .98 1.01 .95 .96
1 .98 .96 .98 .99 .97 .98 1.01 1.00 .97
2 .99 .97 1.05 1.00 .97 1.03 1.01 1.01 1.01
3 .92 .93 1.08 .92 .92 1.07 1.02 1.05 1.01
4 .93 .97 1.07 .93 .97 1.07 1.02 1.05 1.02

2

0 .96 .88 .92 .95 .87 .89 1.01 .95 .94
1 .94 .91 .92 .93 .88 .89 1.03 1.00 .98
2 .92 .88 .98 .92 .86 .94 1.00 1.06 1.03
3 .89 .89 1.04 .89 .86 1.01 1.00 1.13 1.07
4 .92 .95 1.01 .93 .93 .98 .98 1.20 1.08

3

0 1.02 .91 .81 1.01 .90 .80 1.07 1.07 .78
1 .98 .97 .85 .97 .94 .85 .89 .84 .81
2 .98 .98 .94 .99 .97 .94 .87 .90 .88
3 .95 .99 1.05 .97 .98 1.07 .96 1.04 .92
4 1.00 1.09 1.06 1.04 1.13 1.12 .90 1.00 .81

Non-residents traveled checked-in

Total Hotels Rental Apartments

k m t− 1 t t + 1 t− 1 t t + 1 t− 1 t t + 1

AR(2) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1

0 1.00 1.01 1.00 1.00 1.01 .99 1.00 .98 .99
1 1.02 1.01 .99 1.04 1.02 .99 .99 1.00 .99
2 1.03 1.01 1.04 1.04 1.02 1.03 .99 .98 1.05
3 .97 .98 1.05 .99 .98 1.04 .98 1.05 1.05
4 .96 .97 1.02 .98 .98 1.01 .97 1.04 1.03

2

0 .95 .91 .93 .94 .90 .93 .97 .93 .93
1 .96 .92 .92 .96 .92 .92 .97 .96 .93
2 .98 .92 .97 .98 .91 .96 .96 .95 1.00
3 .98 .89 .99 .99 .89 .98 .97 1.02 .99
4 .97 .90 .88 .98 .91 .88 .97 1.02 .99

3

0 1.01 .97 .91 1.00 .97 .93 .99 .95 .82
1 1.03 .99 .93 1.02 1.00 .94 .93 .87 .84
2 1.04 1.01 .99 1.04 1.01 .98 .95 .87 .94
3 1.04 .97 1.03 1.04 .98 1.03 .97 .93 .88
4 1.08 1.03 .94 1.08 1.07 .97 1.02 .98 .80

Note: t − 1, t and t + 1 refers to the backasting, nowcasting and forecasting
exercises. k and m refers to the number of factors and lags (for those factors)
included in the model. The forecasting sample is 2014.09-2016.01, which im-
plies comparisons over 17 forecasts. Entries are the relative (to an AR model)
Root Mean Squared Errors (RMSE) of an autoregressive model that is enlarged
with the first k common factors extracted from a principal component for travel
related query.
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Figure 1: Query index and non-resident tourism indicators

(a) Overnight Stays

2
0
0
7
.0
7

2
0
0
8
.0
1

2
0
0
8
.0
7

2
0
0
9
.0
1

2
0
0
9
.0
7

2
0
1
0
.0
1

2
0
1
0
.0
7

2
0
1
1
.0
1

2
0
1
1
.0
7

2
0
1
2
.0
1

2
0
1
2
.0
7

2
0
1
3
.0
1

2
0
1
3
.0
7

2
0
1
4
.0
1

2
0
1
4
.0
7

2
0
1
5
.0
1

2
0
1
5
.0
7

2
0
1
6
.0
1

0.5

1

1.5

2

2.5

3
·104

100

200

300
Google query (RHS)

Overnight-stays (LHS)

(b) Travelers checked in
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Note: Travelers checked in and overnights stays are expressed in thousands. Both tourism
indicators are obtained from National Statistics Institute. The query index is from Google.

Figure 2: Comparison of yearly growth rates
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Figure 3: Correlations between Italian overnights stays (Spanish hotels) and travel related
Google query

All Queries
Air

Bus/Rail
Campsite
Car Rental
Activities

Hotel
Package

Pure Destination
Travel General

Note: Two years rolling windows correlations. A deeper blue indicates proximity to 1 while a
deeper red to -1. Windows from 2010.07 to 2016.01
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Figure 4: Estimated common factors
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Figure 5: R2 beetween factors and individual query (grouped by query)
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Figure 6: R2 beetween factors and individual query (grouped by country)
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Figure 7: Query indices with partial information
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Note: “Monthly average” refers to averages over all the weeks of the month the weekly index is
available. “Average 2 weeks” refers to averages over the first two weeks of each month.

Figure 8: Overnight stays in hotels. Backast,
Nowcast and Forecast done in February 15, 2016

Note: 20%, 40% and 60% refers to prediction error bands. Estimated values refers to the point
estimate for backast, nowcast and forecast computed in February 15th, 2016.
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